火电厂热工及热力设备基础
- 格式:pdf
- 大小:492.39 KB
- 文档页数:65
火力发电厂热工电源及气源系统设计技术规程一、概述本技术规程是为了保证火力发电厂热工电源及气源系统设计符合要求,能够满足安全、稳定、经济、环保等要求,制定的规程。
二、基本要求1、安全性:热工电源及气源系统设计应符合国家安全标准及相关法规要求,确保系统正常运行,防止事故发生。
2、稳定性:热工电源及气源系统设计应充分考虑各种情况下的影响,保证系统平稳运行,避免因过载和瞬间断电等问题导致设备损坏和停电。
3、经济性:热工电源及气源系统设计应充分考虑成本,减少浪费,使系统达到节能、降耗的目的。
4、环保性:热工电源及气源系统设计应符合国家环境标准及相关法规要求,减少污染物排放,保护环境。
三、设计原则1、功能点分离原则:热工电源及气源系统应分别设计,分离各自功能点,避免出现扰动或干扰。
2、可靠性原则:热工电源及气源系统的设计应确保设备设计符合正常运行的要求,降低故障率。
3、先进性原则:热工电源及气源系统的设计应采用最新技术和设备,保证系统的先进性和高效性。
4、适用性原则:热工电源及气源系统的设计要适合不同的工况和环境,以保证系统在不同情况下的正常运行。
5、可维护性原则:热工电源及气源系统的设计应考虑设备的维护和保养,以确保系统的可靠性和稳定性。
四、热工电源系统设计热工电源系统包括热力、水力和机械三个系统。
热力系统包括锅炉、汽轮机、发电机组等设备,水力系统包括供水、循环水、给水等系统,机械系统包括风机、输灰设备等设备。
1、锅炉系统设计(1)设备选型:根据火力发电厂的设计要求,选用适合的锅炉,选择合适的燃料,根据所选锅炉的要求选用相应的控制配件和防爆装置。
(2)烟气处理:针对锅炉烟气中的污染物进行处理,采用除尘器、脱硫设备等处理措施,达到排放标准。
(3)管道设计:设计锅炉的输水、出水管道,金属烟道和热风道,应保证水循环数量和水流速度,烟气流速等设计要求。
(4)水处理:提供水质要求,基于水量和水质等要素设计水处理系统,选择合适的水处理方法和水处理设备,保证水质符合要求。
火电厂主要设备简介火力发电厂是利用化石燃料燃烧释放的热能发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。
主要有蒸汽动力发电厂、燃气轮机发电厂、内燃机发电厂几种类型.火电厂主要设备:汽轮机本体汽轮机本体(steam turbine proper)是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。
它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。
汽轮机本体由固定部分(静子)和转动部分(转子)组成。
固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。
转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。
固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。
汽缸是约束高压蒸汽不得外泄的外壳。
汽轮机本体还设有汽封系统。
锅炉本体锅炉设备是火力发电厂中的主要热力设备之一。
它的任务是使燃料通过燃烧将化学能转变为热能,并且以此热能加热水,使其成为一定数量和质量(压力和温度)的蒸汽。
由炉膛、烟道、汽水系统(其中包括受热面、汽包、联箱和连接管道)以及炉墙和构架等部分组成的整体,称为“锅炉本体”。
“热力系统及辅助设备汽轮机部分的辅助设备有凝汽器、水泵、回热加热器、除氧器等。
把锅炉、汽轮机及其辅助设备按汽水循环过程用管道和附件连接起来所构成的系统,叫做发电厂的热力系统。
发电厂的热力系统按照不同的使用目的分为“原则性热力系统”、“全面性热力系统”、汽轮机组热力系统”等。
发电机本体在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。
因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。
在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。
其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。
一、热工基础知识(一)、热力学基础1、温度温度是衡量物体冷热程度的尺度,是物质分子热运动平均动能的度量。
摄氏温标:1个标准大气压下纯水的冰点定为0℃,沸点定为100℃,在这个区域内划分100等分,每1等分为1度,单位为℃。
用t表示。
华氏温标:1个标准大气压下纯水的冰点定为320F,沸点定为2120F,在这个区域t1=1.8t+32 (0F)内划分180等分,每1等分为1度,单位为0F。
用t1表示。
绝对温标:又称热力学温标,每一度大小与摄氏温标相等,起点为物质内分子热T=t+273.15(K)运动完全停止时-273.15℃),单位为K。
用T表示。
2、压力1 bar 巴 =100000 pa 帕斯卡=0.1MPa1 psi 磅/平方英寸=0.0703 kgf/cm21 kgf/cm2 千克力/平方厘米 =98000 pa 帕1 mm aq. 毫米水柱=9.8 pa 帕1 mm hg 毫米汞柱=133.28 pa 帕1 m H2O 米水柱=9800 pa 帕=0.1 kgf/cm2 千克力/平方厘米工程上常将1大气压(B)看成1个工程大气压或0.1MPa,即B=1kgf/cm2,或B=0.1MPa 表压:通过压力表读出的压力,为绝对压力减当地大气压。
真空度:压力比大气压低的程度。
真空度=B-绝对压力3、热能:分子热运动强度的度量,是依靠温差传递的能量。
用Q表示1kcal=4.1868kJ1 kcal/h 大卡/时=1.163 W 瓦1 kW千瓦=860 kcal/h 大卡/时1 btu/h 英制热量单位/时=0.293 W瓦4、比热:单位质量的物质温度每升高或降低1K所需要加入或放出的热量。
定压比热Cp:气体在加热或冷却时,如果保持压力不变,则其比热称为定压比热。
物体的吸(放)热量:Q=mCp(t2-t1)定容比热Cv :气体在加热或冷却时,如果保持体积不变,则其比热称为定压比热。
Cp>Cv绝热指数k:气体的定压比热与定容比热之比为气体的绝热压缩指数,k=Cp/Cv5、理想气体状态方程:pV=mRTR:气体常数,8314/气体分子量,空气为287J/(kg.K)p:Pa,帕V:m3m:kgT:K等温过程,等压过程,等容过程绝热过程:气体状态发生变化时,与外界不发生热量交换的过程称为绝热过程。
热工基础总结热工基础是工程学科中非常重要的一部分,它涉及到能量传递、传导、传感、转化和储存等诸多方面。
在现代工程设计和制造中,热工基础的应用无处不在,它对于工程师而言是必不可少的知识。
本文将围绕热工基础展开论述,探讨热工基础的重要性以及其在工程实践中的应用。
热工基础的重要性不言而喻。
首先,热工基础关乎能源转换和利用效率的问题。
我们生活在一个高度依赖能源的社会中,因此,了解热工基础能够帮助我们有效利用能源资源,并提高我们的生活质量。
其次,热工基础也与环境保护息息相关。
能源和环境问题是当今世界面临的重要挑战之一,通过热工基础的应用,我们可以有效地减少能源的消耗和对环境的污染,从而实现可持续发展。
最后,热工基础也为工程设计提供了重要的理论支持。
无论是建筑设计、机械制造还是电子电器等领域,都需要考虑热工基础的知识,以确保产品的性能和安全。
在热工基础的学习过程中,我们需要深入了解一些关键概念和原理。
首先,热力学是热工基础的核心内容之一。
热力学研究了物质和能量之间的相互关系,通过研究热力学,我们可以了解物质在各种情况下的热力学性质,如温度、压力、焓、熵等。
其次,传热是热工基础的另一个重要内容。
传热研究了热能在物质之间传递的过程,主要包括传导、对流和辐射传热。
了解传热的原理和特点,可以帮助我们设计高效的传热设备,并提高能源利用效率。
此外,流体力学和热传感器等也是热工基础的重要领域,它们与热工基础的其他方面相互关联,共同构成了热工基础的知识体系。
热工基础的应用是多样化的。
首先,热工基础在能源领域的应用非常广泛。
例如,热电站利用热能转换为电能的过程,石油炼制和化学工业生产中的热处理过程等都需要热工基础的知识。
其次,在工程设计和制造中,热工基础的应用也是必不可少的。
无论是制造机械、建造建筑或设计电子电器,都需要考虑材料的热膨胀、传热和热损失等问题。
此外,热工基础还与环境保护相关。
通过研究热工基础,我们可以设计并制造出更环保、节能的产品,减少对环境的压力。