C(12,3)*9!=12!/3! 注意 本解法用到了组合的概念,它也可以作为基本的组 合模型
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
1.2.2 组合
定义 从n个不同元素中取r个不重复的元素组成一个子集, 而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用 C(n,r) 表示,
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
例1.2.2 A单位有7名代表,B单位有3位代表,排成一列合影, 如果要求B单位的3人排在一起,问有多少种不同的排列方 案。若A单位的2人排在队伍两端,B单位的3人不能相邻, 问有多少种不同的排列方案?
B单位3人按一个元素参加排列,则有
例1.2.3 求由{1,3,5,7}组成的不重复出现的整数的总和 解:这样的整数可以是1位数,2位数,3位数,4位数, 若设 Si,i=1,2,3,4,是i位数的总和,则
S=S1+S2+S3+S4,
于是我们只需要计算Si即可。 显然,一位数之和 S1=1+3+5+7=16; 两位数有:13,15,17,31,35,37,51,53,57,71,73,75, 所以 S2=3(1+3+5+7)10+3(1+3+5+7)= 480+48=528
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
从n个中取r个的排列的典型例子是(取球模型): 从n个有区别的球中,取出r个,放入r个有标志的盒子里,且无 一空盒。 第1个盒子有n种不同选择; 第2个有n-1种选择; · · · · · · , 第r个有n-r+1种选择。故由乘法原理有 P(n,r)=n(n-1)· · · · · · (n-r+1) =n!/(n-r)!