答:可以组成100个三位整数.
一、两个原理
题型一 利用两个计数原理求方法数
例1(1)现要排一份5天的值班表,每天
有一人值班,共有5人,每人可以多天值班 或不值班,但相邻两天不准由同一人值班, 问此值班表共有 1280 种不同排法.
一、两个原理
(1)值班表须依题设一天一天的分步 完成.第一天有5人可选,有5种排法,第二 天不能用第一天的人,有4种排法,同理, 第三天、第四天、第五天也有4种,故由分 步计数原理排值班表共有5×4×4×4×4=1280 种,应填1280.
一、两个原理
(2)三角形的三边长均为整数,且最长的边 长为11,则这样的三角形的个数有( C )
A.25个 B.26个 C.36个 D.37个
(2)设另两边长为x、y,且1≤x≤y≤11 (x、 y∈Z), 构 成 三 角 形 , 则 x+y≥12, 当 y取 11时 , x=1,2,3,…,11,有 11个 ;当 y取 10时 , x=2,3,…,10,有 9 个 ;当 y 取9时,x=3,4,…,9,共7个;……;当y取6时,x也只能为6,有 1个,故满足题设的三角形共有:11+9+7+5+3+1=36个,故
2.如果任何一类办法中的任何一种方 法都能完成这件事,即类与类之间是相互 独立的,即分类完成,则选用分类计数原 理;如果完成一件事要经历几个步骤(即 几步),且只有当这些步骤都做完,这件 事才能完成,即步与步之间是相互依存、 相互连续的,即分步完成,则选用分步计 数原理.
3.排列与组合的本质区别在于排列不 仅取而且排,即与顺序有关,而组合只取 出一组即可,与顺序无关.
为了参加学校的元旦文艺会演,某 班决定从爱好唱歌的4名男同学和5名女 同学中选派4名参加小合唱节目,如果要 求男女同学至少各选派1名,那么不同的 选派方法有多少种?