10-11上中高数A卷
- 格式:ppt
- 大小:781.00 KB
- 文档页数:19
历年高等数学(A)Ⅰ期末考试卷1998级一. 试解下列各题(24分)1. 讨论极限112lim 21-+-→x x x x 2.求x dt e e xt t x cos 1)(lim 0 0--⎰-→ 3.求⎰xdx arccos4.求dx x x ⎰-2cos sin π二. 试解下列各题(35分)1. 若函数⎪⎩⎪⎨⎧>-=<=1,11,01,1)(x x x x f 及x e x g =)(,确定)]([x g f 与)]([x f g 的间断点,指出其类型2. 设)(x y y =由方程y x x arctg y +=所确定,求y ' 3. 求⎰+41x x dx 4.求⎰+42sin 1πθθd 5.设)(x y y =由方程组⎩⎨⎧+=+=tt y arctgtt x 63所确定,求)(x y '' 三. 求圆域222)(a c y x ≤-+ )0(c a <<绕x 轴旋转而成的旋转体的体积(10分)四. 设有底面为等边三角形的一个直柱体,其体积为常量V (0>V ),若要使其表面积达到最小,底面的边长应是多少?(10分)五. 设函数f (x ) 在[0,1]上可导且0< f (x )<1,在(0,1)上有1)(' ≠x f ,证明在(0,1)内有且仅有一个x ,使f (x )=x .(8分)六. 连接两点M (3, 10, -5)和N (0, 12, z )的线段平行平面0147=-++z y x ,确定N 点的未知坐标(6分)七、自点P (2, 3, -5)分别向各坐标面作垂线,求过三个垂足的平面方程(7分)1999级一. 试解下列各题(30分) 1. 求)12(lim +-+∞→n n n n2.验证罗尔定理对32)(2--=x x x f 在[-1,3]上的正确性3.x arctgx x x 30sin lim -→ 4.求⎰++dx x x 1322 5.设)(x y y =由方程1=++y xy x 确定,求y ' 二.试解下列各题(28分)1.设⎩⎨⎧+=+=t t y t t x 2222,求22dx y d 2.求⎰-πθθ 0 3)sin 1( d 3.求⎰1 0 dx e x4.试求空间直线⎩⎨⎧-=+=7652z y z x 的对称式方程三.求由y = ln x , y =0和 x = 2所围图形的面积及该平面图形绕y 轴旋转所得旋转体的体积(12分)四. 求函数⎰+=xtdt t y 0arctan )1(的极小值(12分)五. 设j i a +=,k j b +-=2,求以向量b a,为边的平行四边形的对角线的长度(8分)六. 证明:当0≠x 时,有不等式x e x +>1(10分)一、试解下列各题(30分)1. 求x x x )3l n (2lim+∞→ ; 2. 求dx x x⎰-31 ; 3. 设x x e e y -+=,求y '' ;4. 求曲线)2()1(2-+=x x y 的凹凸区间;5. 求过球面9)4()1()3(222=++++-z y x 上一点2)- 0, ,1(p 的切平面方程。
高数期末考试卷和答案**高数期末考试卷**一、选择题(每题4分,共40分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的数值,这个数值称为该点的()。
A. 函数值B. 极限C. 导数D. 积分答案:B2. 函数f(x)=x^2在x=0处的导数为()。
A. 0B. 1C. 2D. -1答案:C3. 以下哪个函数是奇函数?()A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B4. 以下哪个函数是偶函数?()A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:A5. 以下哪个选项是正确的不定积分?()A. ∫x^2 dx = x^3 + CB. ∫x^2 dx = 2x^3 + CC. ∫x^2 dx = 3x^3 + CD. ∫x^2 dx = x^3/3 + C答案:D6. 以下哪个选项是正确的定积分?()A. ∫[0,1] x^2 dx = 1/3B. ∫[0,1] x^2 dx = 1/2C. ∫[0,1] x^2 dx = 2/3D. ∫[0,1] x^2 dx = 1/4答案:A7. 以下哪个选项是正确的二重积分?()A. ∬[0,1] x^2 dy dx = 1/3B. ∬[0,1] x^2 dy dx = 1/2C. ∬[0,1] x^2 dy dx = 2/3D. ∬[0,1] x^2 dy dx = 1/4答案:A8. 以下哪个选项是正确的多元函数偏导数?()A. ∂f/∂x = 2xB. ∂f/∂y = 2yC. ∂f/∂z = 2zD. ∂f/∂x = 2x + 2y答案:A9. 以下哪个选项是正确的多元函数全微分?()A. df = 2x dx + 2y dyB. df = 2x dx + 2y dy + 2z dzC. df = x dx + y dyD. df = x dx + y dy + z dz答案:A10. 以下哪个选项是正确的泰勒展开?()A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. e^x = 1 + x + x^2 + x^3 + ...C. e^x = 1 + x + x^2/3! + x^3/4! + ...D. e^x = 1 + x + x^2/2 + x^3/3 + ...答案:A二、填空题(每题4分,共20分)11. 函数f(x) = sin(x)在x=0处的导数为______。
安徽大学2008—2009学年第一学期《高等数学A (三)》考试试卷(A 卷)(闭卷 时间120分钟)一、单项选择题(每小题2分,共10分)1、下列陈述正确的是( )。
(A) 若方程组0m n A x ⨯=有唯一解,则方程组m n A x b ⨯=有唯一解(B) 若方程组m n A x b ⨯=有唯一解,则方程组0m n A x ⨯=有唯一解(C) 若方程组0m n A x ⨯=有无穷多解,则方程组m n A x b ⨯=有无穷多解(D) 若方程组m n A x b ⨯=无解,则方程组0m n A x ⨯=无解2、已知n 维向量组12,,,(2)s s ααα≥线性相关,则下列选项中必正确的是( )。
(A) 对于任何一组不全为零的数12,,,s k k k ,使得11220s s k k k ααα+++=(B) 12,,,s ααα中任何两个向量线性相关 (C) 存在一组不全为零的数12,,,s k k k ,使得11220s s k k k ααα+++=(D) 对于每一个i α都可以由其余向量线性表出3、设0()1,0()1P A P B <<<<,且(|)(|)1P A B P A B +=,则 ( )。
(A) 事件A 与事件B 互不相容 (B) 事件A 与事件B 对立 (C) 事件A 与事件B 不独立 (D) 事件A 与事件B 独立4、设~()X E λ(指数分布),n X X X ,,,21 是总体X 的样本,则参数λ的矩估计是( )。
(A) }{max 1i ni X ≤≤ (B) X 2 (C) X (D) 1/X5、设n X X X ,,,21 是来自正态总体2(,)N μσ的样本,则下列结论正确的是( )。
(A) 22211()~()n i i X n μχσ=-∑ (B) 2211()~(1)ni i X X n nχ=--∑(C) 22211()~()ni i X X n χσ=-∑ (D) 2211()~(1)1nii X X n n χ=---∑院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------二、填空题(每小题2分,共10分)6、若齐次线性方程组1231231230020kx x x x kx x x x x +-=⎧⎪--=⎨⎪-+=⎩ 有非零解,则k = 。
、 广东海洋大学 2010—2011学年第 一 学期 《 高 等 数 学 》课程试题 课程号: 19221101x1 错误! 考试 错误! A 卷 □√ 闭卷 □ 考查 □ B 卷 □ 开卷一 。
填空(3×6=18分) 1. 函数 x xe x f -=)(的拐点是 。
2. =⎰dx x e x 212/1 。
3. 设 )1( )ln (2>='x x x f ,则 )(x f = 。
4. 曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为 。
5. 设⎰=Φx tdt x 0sin )(,则=Φ)4('π . 6. 设 x x x f 1)1()(+=,则 )1(f '等于 。
二 .计算题(7×6=42分) 1. 求30sin 22sin lim x x x x -→。
班级:姓名: 学号:试题共5页加白纸3张密封线GDOU-B-11-3022. 求不定积分dx x x ⎰cos sin 13。
3. 已知x xsin 是)(x f 的原函数,求dx x xf ⎰)('.4. 设方程05232=-+-+y x e y x 确定函数)(x y y =,求dx dy 。
5. 求x e x f x cos )(=的三阶麦克劳林公式.6. 求由曲线Inx y =与直线Ina y =及Inb y =所围成图形的面积0>>a b .三。
应用及证明题(10×4=40分)1. 证明:当0>x 时, x x +>+1211。
2. 若函数)(x f 在),(b a 内具有二阶导函数,且)()()(321x f x f x f ==)(321b x x x a <<<<,证明:在),(31x x 内至少有一点ξ,使得0)(''=ξf .3. 当x 为何值时,函数dt te x I x t ⎰-=02)(有极值.4. 试确定a 的值,使函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续.。
考试题(A 卷)一、计算下列数列或函数的极限(请从三道题目中任选二道题,多选的话则按照前两道题目给分。
每题5分,合计10分)1. n211lim 1x n n →∞⎛⎫+- ⎪⎝⎭.解 (方法一)22n n22n(1)12111lim 1lim 11li 1.m x x n n n n x n n n n n e n →∞→∞--→∞-⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭⎡⎤-⎛⎫⎢⎥=+= ⎪⎢⎥⎝⎭⎢⎥⎣⎦(方法二)222n 1nln 1211limnln 1limn 111lim 1li .m x x n n x x n n n n e n n eee e →∞→∞-⎛⎫+ ⎪⎝⎭→∞→∞-⎛⎫-+⋅⎪⎝⎭⎛⎫+-= ⎪⎝⎭====2.2()()limxx x t f t dtx →-⎰,其中()f x 是一个连续函数.解220()()()()limlim()()()lim2()(0)lim 22.xx xx x x x x x t f t dtx f t dt tf t dtxxf t dt xf x xf x xf x f →→→→--=+-===⎰⎰⎰⎰3. 求二元函数()()()()44,0,0lim2ln x y x y x y →++的极限. 解(方法一) 平面极坐标为(),ρθ。
由于()(),0,0x y →,不妨设11,22x y ≤≤,于是()()44444444max ,,21,414ln lnln 2ln 24ln ,x y x y x y x y ρρρρ≥+≥+=≤=-+所以()()()4402ln 6ln 22ln 0x y x y ρρ≤++≤-→()()()()44,0,0lim2ln 0x y x y x y →++=解(方法二) 有界量与无穷小量之积是无穷小量,所以()()()()()()()()()()44,0,01444441,0,0444lim2ln 2lim ln 0x y x y x y x y x y x y x y x y →→++⎡⎤+⎢⎥=⋅++=⎢⎥⎢⎥+⎣⎦二、 (8分)过原点作抛物线()y f x ==D 是该切线与上述抛物线及x 轴围成的平面区域. 求区域D 绕x 轴旋转一周所得旋转体的体积.解 设切点为()00,x y ,则00y y x ⎧=⎪⎨=⎪⎩ 解方程组得()()00,2,1x y =。
2010-2011学年第一学期考试卷 A课 程:高等数学Ⅰ1(90学时) 考 试 形 式:闭卷考试 一.填空题(每小题3分,本大题满分15分) 1.设函数⎩⎨⎧>≤=1||01||1)(x x x f ,则 )]([x f f = .2.设函数⎪⎩⎪⎨⎧≥+<=0202sin )(x ax x xx x f ,当常数=a ______时,)(x f 在0x =处连续.3.曲线x e y 2=上点(0,1)处的切线方程为______ __.4.曲线53523++-=x x x y 的凹区间为_______ _____. 5.若x e -是)(x f 的原函数,则dx x f x )(ln 2⎰ = . 二.选择题(每小题3分,本大题满分15分) 1. 当1x →时,无穷小量x-1是x -1的( ).A. 高阶无穷小;B. 低阶无穷小;C. 等价无穷小;D. 同阶但不等价无穷小. 2.若∞=→)(lim x f ax ,∞=→)(lim x g ax 则必有( )A. ∞=+→)]()([lim x g x f ax ; B. ∞=-→)]()([lim x g x f ax ;C. 0)()(1lim=+→x g x f ax ; D. ∞=→)(lim x kf ax ,(0≠k 为常数)3.函数xxx x f πsin )(3-=的可去间断点个数为( ).A .1; B. 2; C. 3; D. 无穷多个. 4. 设函数)(x f y =在点0x 处可导, 且0)(0≠'x f , 则 xdy y x ∆-∆→∆0lim 等于().A. 0;B. -1;C. 1;D. ∞ . 5. 设)(x f 连续,且⎰=24)(xx dt t f ,则)4(f = ( )A. 2;B. 4;C. 8;D. 16 . 三.解答下列各题(每小题6分,本大题满分18分) 1.)3ln(tan 2x x y ⋅=,求dy .2.求由方程0)cos(=-+xy e y x 所确定的隐函数()y f x =在0x =处的导数.3.设⎩⎨⎧=+=t y t x cos 12,求dx dy 和22dx yd 。
高等数学a试卷及答案【篇一:《高等数学a(上)》试题答案(b卷)2013】class=txt>科目:《高等数学a(上)》试题(b卷)学院:专业班级:姓名:学号:阅卷教师: 2013年月日考试说明:本课程为闭卷考试,可携带。
一、选择题(每题3分,共15分)(选择正确答案的编号,填在各题前的括号内)1.设f(x)?xsinx,则f(x)在(??,??)内为( b). a.周期函数 b.偶函数 c.单调函数 d.有界函数 2、下列正确的是(d )a.极大值一定大于极小值b. 拐点是函数单调性转变的点 c. 最值一定是极值 d. 拐点是凹凸性的转变的点 3、下列各式中,正确的是( d )1xa.lim(1?)?e x?0?xb.lim(1?x?01x)xec.lim(1?)x??ex??1x1d.lim(1?)x?e?1 x??x4、关于函数连续的说法中,哪一个正确d a.函数f(x)在点x?x0处有定义,则在该点连续; b.若limf(x)存在,则函数f(x)在x0处连续;x?x0c.若f(x)在x?x0处有定义,且limf(x)存在,则函数在x0处连续; x?x0d.若f(x0?0)?f(x0?0)?f(x0),则函数在x0处连续。
5、若?f(x)dx?f(x)?c,则?f(sinx)cosxdx=( a ) a . f(sinx)?cb. ?f(sinx)?cc. xf(sinx)?cd. f(sinx)sinx?c二、填空题(每题3分,共15分)1. 设曲线方程为y?x2?sinx,该曲线在点(0,0)处的切线方程__y=-x_________1sinxdx=___0______ 2.??11?x2sinx____0___ 3. limx??xx4. 函数f(x)?x?2的斜渐近线方程为___ y=x ___ x?15.函数xy?1在点(1,1)处的曲率为___ 2_____.三、计算题(每题8分,共56分)1求极限:lim(x?0x?1?1sinxx?1?11)lim1x?0x2xx(x?1?1)22.设f(x)?x(x?1)(x?2)?(x?100),求f?(0).limx?0f(x)?f(0)x(x?1()x?2)?(x?100)lim100! x0x0x1x3. 已知y?x,求dy.dy?d(x)?d(e1xlnxx)?elnxx1lnx1?lnx?d()?xx?dx 2xx4.5.112tdtdt?2?2arctant?c?c 22?1?tt1?tx0cos2xdx 111x120cos2xdx0xsecxdxxtanx00tanxdxtan1lncosx0tan1lncos1.6. 求由曲线y?x2与y?2x围成的平面图形的面积。