补课带电粒子在电场中的运动
- 格式:doc
- 大小:140.50 KB
- 文档页数:2
带电粒子在电场中的运动笔记摘要:一、带电粒子在电场中的运动规律1.匀强电场中的运动2.非匀强电场中的运动二、带电粒子在电场中的受力分析1.电场力的作用2.重力的影响三、带电粒子在电场中的运动实例1.匀变速直线运动2.类平抛运动3.平衡状态正文:一、带电粒子在电场中的运动规律带电粒子在电场中的运动规律取决于电场强度和粒子的初速度。
在匀强电场中,带电粒子受到的电场力是恒力,因此其运动状态是匀变速运动。
具体来说,当带电粒子的初速度与电场强度方向相同时,粒子将做匀变速直线运动;当带电粒子的初速度与电场强度方向垂直时,粒子将做类平抛运动。
在非匀强电场中,带电粒子受到的电场力是变力,因此其运动状态是变加速运动。
此时,带电粒子的运动轨迹可能呈现出曲线,具体取决于电场强度的分布情况。
二、带电粒子在电场中的受力分析在电场中,带电粒子受到的主要力是电场力。
电场力的大小与粒子的电荷量、电场强度以及粒子与电场之间的夹角有关。
另外,如果带电粒子在地球表面附近运动,还需要考虑重力的影响。
三、带电粒子在电场中的运动实例在匀强电场中,带电粒子可能做匀变速直线运动或类平抛运动。
例如,当一个带正电的粒子在垂直于电场方向的初速度为零时,其在匀强电场中将做直线运动;而当其初速度与电场方向不垂直时,粒子将做类平抛运动。
在非匀强电场中,带电粒子的运动轨迹可能呈现出曲线。
例如,在示波管中,带电粒子在非匀强电场中运动时,其轨迹可能呈现出复杂的波形。
总之,带电粒子在电场中的运动规律取决于电场强度和粒子的初速度。
在匀强电场中,带电粒子可能做匀变速直线运动或类平抛运动;在非匀强电场中,带电粒子的运动轨迹可能呈现出曲线。
一、教学目标1. 让学生了解带电粒子在电场中的受力特点和运动规律。
2. 使学生掌握电场强度的定义和计算方法。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容1. 带电粒子在电场中的受力分析。
2. 电场强度的定义及其计算公式。
3. 带电粒子在电场中的运动规律。
4. 电场力做功与电势能的关系。
5. 电场线及其特点。
三、教学重点与难点1. 重点:带电粒子在电场中的受力分析,电场强度的定义和计算方法,带电粒子在电场中的运动规律。
2. 难点:电场力做功与电势能的关系,电场线的绘制和理解。
四、教学方法1. 采用多媒体课件辅助教学,直观展示带电粒子在电场中的运动现象。
2. 利用物理实验,让学生亲身体验带电粒子在电场中的受力和运动。
3. 引导学生运用物理知识解决实际问题,提高学生的应用能力。
4. 采用分组讨论、互动提问等方式,激发学生的学习兴趣和思考能力。
五、教学过程1. 引入:通过展示电场现象,引导学生关注带电粒子在电场中的运动。
2. 讲解:讲解带电粒子在电场中的受力分析,电场强度的定义和计算方法,带电粒子在电场中的运动规律。
3. 实验:安排学生进行电场实验,观察带电粒子在电场中的受力和运动。
4. 应用:让学生运用所学知识解决实际问题,如计算带电粒子在电场中的受力和运动轨迹。
6. 作业:布置相关练习题,巩固所学知识。
7. 拓展:介绍电场在实际应用中的例子,激发学生的学习兴趣。
六、教学评价1. 评价学生对带电粒子在电场中受力分析的理解程度。
2. 评价学生对电场强度定义和计算方法的掌握情况。
3. 评价学生对带电粒子在电场中运动规律的应用能力。
4. 评价学生对电场力做功与电势能关系的理解。
5. 评价学生对电场线的绘制和理解的掌握程度。
七、教学资源1. 多媒体课件:用于展示带电粒子在电场中的运动现象和电场线的绘制。
2. 实验器材:用于进行电场实验,观察带电粒子在电场中的受力和运动。
3. 练习题库:用于巩固学生对所学知识的理解和应用。
一、教学目标:1. 让学生了解带电粒子在电场中的基本概念和原理。
2. 使学生掌握带电粒子在电场中的运动规律。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容:1. 电场的基本概念:电场、电场强度、电势等。
2. 带电粒子在电场中的受力分析:电场力、电场力与重力的合成。
3. 带电粒子在电场中的运动规律:直线运动、曲线运动。
4. 电场中的能量转化:电势能、动能、势能。
5. 电场中的守恒定律:电荷守恒定律、能量守恒定律。
三、教学重点与难点:1. 教学重点:带电粒子在电场中的受力分析、运动规律、能量转化。
2. 教学难点:带电粒子在复杂电场中的运动分析、能量转化计算。
四、教学方法:1. 采用多媒体教学,展示带电粒子在电场中的运动过程。
2. 利用物理实验,让学生直观地观察带电粒子在电场中的行为。
3. 引导学生运用物理知识解决实际问题,提高学生的实践能力。
五、教学安排:1. 第1课时:介绍电场的基本概念,电场强度、电势的定义。
2. 第2课时:讲解带电粒子在电场中的受力分析,电场力与重力的合成。
3. 第3课时:学习带电粒子在电场中的直线运动规律,如匀速直线运动、加速直线运动。
4. 第4课时:学习带电粒子在电场中的曲线运动规律,如圆周运动、螺旋运动。
5. 第5课时:探讨电场中的能量转化,电势能、动能、势能的变化。
六、教学安排(续):6. 第6课时:应用守恒定律分析电场中的粒子运动,电荷守恒定律和能量守恒定律的应用。
7. 第7课时:通过实例分析带电粒子在复杂电场中的运动,如非均匀电场、正负电荷间的相互作用。
8. 第8课时:练习题讲解,解决学生在作业中遇到的问题,巩固知识点。
9. 第9课时:开展小组讨论,探讨带电粒子在电场中运动的实际应用,如电子束聚焦、离子加速器等。
10. 第10课时:总结课程内容,进行课程复习,准备期末考试。
七、教学评价:1. 课堂提问:检查学生对带电粒子在电场中运动的理解程度。
2. 作业批改:评估学生对所学知识的掌握情况,纠正错误。
带电粒子在电场中的运动新课大家好,今天我们来学习一个非常有趣的话题——带电粒子在电场中的运动。
在这个过程中,我们将探讨带电粒子如何受到电场力的作用而运动,以及它们在不同电场条件下的运动规律。
希望通过这次学习,大家能够对带电粒子在电场中的运动有一个更加深入的了解。
我们来了解一下什么是带电粒子。
带电粒子是指带有电荷的粒子,它们的电荷可以是正电荷、负电荷或者零电荷。
这些粒子在电场中受到电场力的作用,从而发生运动。
我们可以将带电粒子看作是一个小小的磁铁,当它靠近一个导体时,会产生磁场。
而当带电粒子在电场中运动时,它也会受到磁场的影响,从而发生运动。
接下来,我们来看一下带电粒子在电场中如何受到力的作用。
当带电粒子靠近一个导体时,它会受到一个磁场力的作用。
这个磁场力的大小与带电粒子的速度、电荷量和导体的电流有关。
如果带电粒子的速度越快,那么它所受到的磁场力就越大。
而如果带电粒子的电荷量越大,那么它所受到的磁场力也就越大。
因此,我们可以通过控制带电粒子的速度和电荷量来改变它在导体中的受力情况。
除了导体之外,带电粒子还可以在其他形状的导体上运动。
例如,当带电粒子在一个圆形的导体表面运动时,它会受到一个向心力的作用。
这个向心力的大小与带电粒子的速度、半径和电荷量有关。
如果带电粒子的速度越快,那么它所受到的向心力就越大。
而如果带电粒子的半径越小,那么它所受到的向心力也就越大。
因此,我们可以通过控制带电粒子的速度和半径来改变它在圆形导体上的受力情况。
带电粒子还可以在非导体材料上运动。
例如,当带电粒子在一个金属球体表面上运动时,它会受到一个切向力的作用。
这个切向力的大小与带电粒子的速度、金属球体的半径和金属球体的密度有关。
如果带电粒子的速度越快,那么它所受到的切向力就越大。
而如果金属球体的半径越小,那么它所受到的切向力也就越大。
如果金属球体的密度越大,那么它所受到的切向力也会越大。
因此,我们可以通过控制带电粒子的速度、金属球体的半径和密度来改变它在金属球体上的受力情况。
课题:9 、带电粒子在电场中的运动执教者:龙步来一、教学目标:1.了解带电粒子在电场中的运动——只受电场力,带电粒子做匀变速运动。
2.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动(类平抛运动)。
3.知道示波管的主要构造和工作原理。
4.培养学生综合运用力学和电学的知识分析解决带电粒子在电场中的运动。
5.渗透物理学方法的教育:运用理想化方法,突出主要因素,忽略次要因素,不计粒子重力。
6.培养学生综合分析问题的能力,体会物理知识的实际应用。
二、重点:带电粒子在电场中的加速和偏转规律三、难点:带电粒子在电场中的偏转问题及应用。
四、课时:2个课时五、教学过程:(一)引入:复习力学及本章前面相关知识要点:动能定理、平抛运动规律、牛顿定律、场强等。
(二)授新1.带电粒子在电场中的运动情况(平衡、加速和减速)⑴.若带电粒子在电场中所受合力为零时,即∑F=0时,粒子将保持静止状态或匀速直线运动状态。
例:带电粒子在电场中处于静止状态,该粒子带正电还是负电?分析:带电粒子处于静止状态,∑F=0,mgqE ,因为所受重力竖直向下,所以所受电场力必为竖直向上。
又因为场强方向竖直向下,所以带电体带负电。
⑵.若∑F≠0(只受电场力)且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动。
(变速直线运动)◎打入正电荷(右图),将做匀加速直线运动。
设电荷所带的电量为q ,板间场强为E电势差为U ,板距为d, 电荷到达另一极板的速度为v,则电场力所做的功为:qEL qU W == 粒子到达另一极板的动能为:221mv E k = 由动能定理有:221mv qU =(或221mv qEL = 对恒力)※若初速为v 0,则上列各式又应怎么样?让学生讨论并列出。
◎若打入的是负电荷(初速为v 0),将做匀减速直线运动,其运动情况可能如何,请学生讨论,并得出结论。
请学生思考和讨论课本P 33问题分析讲解例题1。
(详见课本P 33)【思考与讨论】若带电粒子在电场中所受合力∑F ≠0,且与初速度方向有夹角(不等于0°,180°),则带电粒子将做什么运动?(曲线运动)---引出2.带电粒子在电场中的偏转(不计重力,且初速度v 0⊥E ,则带电粒子将在电场中做类平抛运动)复习:物体在只受重力的作用下,被水平抛出,在水平方向上不受力,将做匀速直线运动,在竖直方向上只受重力,做初速度为零的自由落体运动。
带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。
若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。
若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。
带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。
可知
而
所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。
转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
带电粒子在电场中的运动【教学目标】1.理解带电粒子在电场中的运动规律,并能分析解决加速和偏转方向的问题。
2.知道示波管的构造和基本原理。
3.通过带电粒子在电场中加速、偏转过程分析,培养学生的分析、推理能力。
4.通过知识的应用,培养学生热爱科学的精神。
【教学重点】带电粒子在匀强电场中的运动规律。
【教学难点】综合应用力学和电学知识处理偏转问题。
【教学过程】一、新课导入教师活动:给学生抛出2012年全世界粒子物理学界最振奋人心的消息:发现“上帝粒子”。
给大家讲述中国科学院卡弗里理论物理研究所2012年KITPC拓展项目活动,欧洲核子中心大型强子对撞机原理。
结合北京正负电子对撞机的图片讲述参观感受,介绍电子直线加速原理与世界粒子物理研究前沿对接,引入新课。
二、新课教学1.教学任务:带电粒子在电场中的的平衡问题师生活动:出示问题问题1:水平放置的两平行金属板间有一匀强电场,已知板间距离为d=5cm,有一质量为m=1.0×10-9kg、带负电的液滴悬浮其中,其电荷量为5.0×10-12C,要使液滴处于静止状态,两极板间应加多大的电势差?哪块极板的电势较高?以提问的方式,师生共同分析得出结论,投影解题过程。
学生回答:略2.教学任务:带电粒子的加速师生活动:出示问题问题2:如图,两平行极板之间的距离为d,板间存在场强为E的匀强电场,有一电荷量为e,质量为m的电子,从左侧极板附近由静止加速,求:电子的加速度、到达右侧极板时的速度及所需时间。
问题3:如图,两平行极板之间的距离为d ,板间电压为U ,有一电荷量为e ,质量为m 的电子,从左侧极板附近由静止加速,求:电子的加速度、到达右侧极板时的速度及所需时间。
问题4:如图,两平行极板之间的距离为d ,板间电压为U ,有一电荷量为e ,质量为m 的电子,以初速度为v 0从左侧极板附近加速,求:电子的加速度和到达右侧极板时的速度。
学生分三组,分别完成问题2、问题3和问题4,分别汇报结果。
《带电粒子在电场中的运动》高中物理教案一、教学目标1.知识与技能:o理解带电粒子在电场中受到的电场力,知道电场力对带电粒子运动的影响。
o掌握带电粒子在匀强电场中的运动规律,包括直线运动和偏转运动。
o能够应用电场知识和牛顿运动定律分析带电粒子在电场中的运动问题。
2.过程与方法:o通过实验和模拟演示,让学生直观感受带电粒子在电场中的运动情况。
o引导学生通过分析和讨论,理解带电粒子在电场中运动的规律,并能应用于实际问题。
3.情感态度与价值观:o激发学生对电场和带电粒子运动的兴趣和好奇心。
o培养学生的物理直觉和逻辑推理能力,鼓励学生在科学探究中积极尝试。
二、教学重点与难点1.教学重点:带电粒子在匀强电场中的运动规律,包括直线运动和偏转运动。
2.教学难点:带电粒子在电场中的偏转运动,特别是侧移量和偏转角的计算。
三、教学准备1.实验器材:电场演示仪、带电粒子加速器模型、示波器等。
2.多媒体课件:包含带电粒子在电场中运动的模拟动画、实验演示视频、例题解析等。
四、教学过程1.导入新课o回顾电场和电场力的相关知识,引出带电粒子在电场中运动的主题。
o提问学生:“如果有一个带电粒子进入电场,它会受到怎样的影响?它的运动会发生怎样的变化?”2.新课内容讲解o带电粒子在电场中受到的电场力:根据电场强度的定义和库仑定律,推导带电粒子在电场中受到的电场力公式。
o带电粒子在匀强电场中的直线运动:分析带电粒子初速度与电场线方向相同和垂直两种情况下的直线运动规律。
o带电粒子在匀强电场中的偏转运动:通过类比平抛运动,讲解带电粒子在垂直于电场线方向上的匀速直线运动和沿电场线方向上的匀加速直线运动,进而推导侧移量和偏转角的计算公式。
3.实验探究o演示带电粒子在电场中的运动实验,让学生观察带电粒子的运动轨迹和偏转情况。
o引导学生分析实验数据,验证带电粒子在电场中运动的规律,并尝试计算侧移量和偏转角。
4.课堂练习与讨论o出示相关练习题,让学生运用所学知识分析带电粒子在电场中的运动问题,并进行计算。
带电粒子在电场中的运动知识点精解1.带电粒子在电场中的加速这是一个有实际意义的应用问题。
电量为q的带电粒子由静止经过电势差为U 的电场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为可见,末速度的大小与带电粒子本身的性质(q/m)有关。
这点与重力场加速重物是不同的。
2.带电粒子在电场中的偏转如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。
设两板间的电势差为U,板长为L,板间距离为d。
则带电粒子在电场中所做的是类似平抛的运动。
(1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线运动求)(2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动)(3)离开电场时在垂直金属板方向的分速度(4)电荷离开电场时偏转角度的正切值3.处理带电粒子在电场中运动问题的思想方法(1)动力学观点这类问题基本上是运动学、动力学、静电学知识的综合题。
处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过程中物体的受力情况及运动性质,并选用相应的物理规律。
能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。
(2)功能观点对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。
即使都是恒力作用问题,用功能观点处理也常常显得简洁。
具体方法常用两种:①用动能定理。
②用包括静电势能、内能在内的能量守恒定律。
【说明】该类问题中分析电荷受力情况时,常涉及“重力”是否要考虑的问题。
一般区分为三种情况:①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响;②根据题中给出的数据,先估算重力mg和电场力qE的值,若mg<<qE,也可以忽略重力;③根据题意进行分析,有些问题中常隐含着必须考虑重力的情况,诸如“带电颗粒”、“带电液滴”、“带电微粒”、“带电小球”等带电体常常要考虑其所受的重力。
总之,处理问题时要具体问题具体分析。
1、如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?
2、质量为 、电荷量为 的带电粒子以初速 沿垂直于电场的方向,进入长为 、间距为 、电压为 的平行金属板间的匀强电场中,
图所示,若不计粒子重力,则可求出如下相关量: (1)粒子穿越电场的时间 : (2)粒子离开电场时的速度 (
3)粒子离开电场时的侧移距离 : (4)粒子离开电场时的偏角 :
3、如图所示,由静止开始被电场(加速电压为 )加速的带电粒子平行于两正对的平行金属板且从两板正中间射入,从右侧射出,设在此过程中带电粒子没有碰到两极板。
若金属板长为 ,板间距离为
、两板间电压为 ,试求带电粒子的偏转位移及末速度与水平的夹角。
4、如图所示,电子经U1电压加速后以速度v0进入偏转电压为U 的电场中,电子离开电场后打在距离偏转电场为L 的屏上,试求电子打在屏上的位置与屏的中点的距离y (平行板的长度为 ,板间距离为d )
5、如图,E 发射的电子初速度为零,两电源的电压分别为45V 、
30V ,A 、B
两板上有小孔Oa 、Ob ,则电子经过Oa 、Ob 孔以及到达C 板时的动能分别是:EKA= ,EKB= ,EKC= .
M N
q
q v 2
6、如图l —8—6所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变.则 ( ) A .当增大两板间距离时,v 也增大 B .当减小两板间距离时,v 增大 C .当改变两板间距离时,v 不变
D .当增大两板间距离时,电子在两板间运动的时间延长
7、如图1—8—7所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子入射速度变为原来的两倍,
而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的 ( )
A .2倍
B .4倍
C .0.5倍
D .0.25倍
8、如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b.不计空气阻力,则( ) A .小球带负电 B .电场力跟重力平衡
C .小球在从a 点运动到b 点的过程中,电势能减小
D .小球在运动过程中机械能守恒
9、匀强电场,当偏转电压为U1时,带电粒子沿轨迹①从两板正中间飞出;当偏转电压为U2时,带电粒子沿轨迹②落到B 板中间;设两次射入电场的水平速度相同,不计粒子的重力,则电压U1、U2之比为( ) A .1:8 B .1:4 C .1:2 D .1:1
10、一束初速不计的电子流在经U =5000V 的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若板间距离d =1.0cm ,板长l =5.0cm ,那么,要使电子能从平行板间飞出,两个极板上最多能加多大电压?
图1—8- 6
图1—8-
7。