verilog实例代码2
- 格式:pdf
- 大小:1.06 MB
- 文档页数:30
verilog模块例化实例以下是一个Verilog模块的实例化示例:假设有一个简单的4位加法器模块(add4), 输入包括两个4位数(a和b),输出为一个5位数(sum)。
现在我们希望实例化这个模块来构建一个8位的加法器。
module add4 (input [3:0] a,input [3:0] b,output [4:0] sum);assign sum = a + b;endmodule现在,我们可以在一个顶层模块中实例化这个add4模块,并将其连接起来。
module top_module (input [7:0] a,input [7:0] b,output [8:0] sum);wire [3:0] a_part;wire [3:0] b_part;wire [4:0] sum_part;// 实例化add4模块,并将连接输入和输出add4 add4_1 (.a(a[3:0]), .b(b[3:0]), .sum(sum_part[3:0]));add4 add4_2 (.a(a[7:4]), .b(b[7:4]), .sum(sum_part[7:4]));// 连接add4模块的输出assign sum = {sum_part[7:4], sum_part[3:0]};endmodule在顶层模块中,我们首先定义了一些中间信号(a_part,b_part和sum_part),它们用于连接不同的add4模块。
然后,我们实例化了两个add4模块(add4_1和add4_2),并将它们的输入和输出连接起来。
最后,我们通过连接sum_part的高4位和低4位,得到了最终的8位和。
Verilog的135个经典设计实例1、立即数放大器:立即数放大器是一种用于将输入电平放大到更高电平的电路,它可以实现任意输入到输出的映射,并且可以在Verilog中使用。
立即数放大器的Verilog实现如下:module immedamp(in, out);input in;output out;reg [3:0] immed;assign out = immed[3];begincase (in)4'b0000: immed = 4'b1000;4'b0001: immed = 4'b1001;4'b0010: immed = 4'b1010;4'b0011: immed = 4'b1011;4'b0100: immed = 4'b1100;4'b0101: immed = 4'b1101;4'b0110: immed = 4'b1110;4'b0111: immed = 4'b1111;4'b1000: immed = 4'b1000;4'b1001: immed = 4'b1001;4'b1010: immed = 4'b1010;4'b1011: immed = 4'b1011;4'b1100: immed = 4'b1100;4'b1101: immed = 4'b1101;4'b1110: immed = 4'b1110;4'b1111: immed = 4'b1111;endcaseendendmodule2、多路复用器:多路复用器是一种用于将多个输入选择转换为单个输出的电路,它可以实现由多种方式选择的输出,并可以使用Verilog实现。
Verilog 加法1. 简介Verilog 是一种硬件描述语言,用于描述数字电路和系统。
在数字电路中,加法是最基本和常见的运算之一。
本文将介绍如何使用 Verilog 实现加法器。
2. 加法器的原理加法器是一种用于执行二进制加法运算的电路。
它通常由多个全加器组成。
全加器是一个三输入、两输出的电路,它接收两个输入和一个进位输入,并产生一个和输出和一个进位输出。
全加器的真值表如下:A B Cin Sum Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1通过将多个全加器连接在一起,可以实现任意位数的加法器。
3. 一位全加器的 Verilog 实现下面是一个使用 Verilog 描述的一位全加器的例子:module full_adder (input A,input B,input Cin,output Sum,output Cout);assign Sum = A ^ B ^ Cin;assign Cout = (A & B) | (Cin & (A ^ B));endmodule这个模块有三个输入(A、B 和 Cin)和两个输出(Sum 和 Cout)。
使用 assign 语句可以直接将逻辑表达式赋值给输出。
4. N 位加法器的 Verilog 实现通过将多个全加器连接在一起,可以实现任意位数的加法器。
下面是一个使用Verilog 描述的 N 位加法器的例子:module n_bit_adder (input [N-1:0] A,input [N-1:0] B,input Cin,output [N-1:0] Sum,output Cout);wire [N-1:0] carry;wire [N:0] carry_chain;assign carry[0] = Cin;assign carry_chain = {carry[0], carry};genvar i;generatefor (i = 0; i < N; i = i + 1) begin : ADDER_LOOPfull_adder adder(.A(A[i]),.B(B[i]),.Cin(carry_chain[i]),.Sum(Sum[i]),.Cout(carry[i+1]));endendgenerateassign Cout = carry[N];endmodule这个模块有两个 N 位输入(A 和 B)、一个输入(Cin)和两个 N 位输出(Sum 和 Cout)。
verilog 二维数组定义
摘要:
一、引言
二、Verilog简介
三、二维数组定义及使用
1.二维数组的概念
2.二维数组的定义
3.二维数组的使用
四、实例分析
1.实例一
2.实例二
五、总结
正文:
一、引言
在数字电路设计中,Verilog是一种常用的硬件描述语言。
通过Verilog,我们可以描述数字电路的结构和功能,为后续的设计和验证提供依据。
本文将介绍Verilog中二维数组的定义及其使用方法。
二、Verilog简介
Verilog是一种基于文本的硬件描述语言,主要用于描述数字电路的结构和功能。
它具有易于学习和使用、仿真速度快、可读性强等特点,被广泛应用于电子设计自动化领域。
三、二维数组定义及使用
1.二维数组的概念
二维数组是一个具有多个元素的数组,这些元素可以是数字、字符或其他数据类型。
在Verilog中,二维数组通常用于表示矩阵或表格数据结构。
2.二维数组的定义
在Verilog中,二维数组可以通过以下方式定义:
```
array<width1, width2> [index1, index2] my_array;
```
其中,`width1`和`width2`分别表示数组的第一维和第二维的宽度,
`index1`和`index2`表示数组的索引。
verilog 类实例Verilog类是一种硬件描述语言,用于描述和设计数字电路。
它是一种基于事件驱动的语言,主要用于描述电子系统中的逻辑电路和时序电路。
本文将介绍Verilog类的基本概念和用法,以及如何使用Verilog类来实现数字电路设计。
我们来了解一下Verilog类的基本结构。
Verilog类由模块(module)、端口(port)、信号(signal)和过程块(always block)组成。
模块是Verilog类的最基本单位,用于封装和组织电路的功能。
端口是模块与外部环境之间的接口,用于输入和输出数据。
信号是数字电路中的数据流,用于表示电路内部的状态和数据。
过程块是Verilog类中的关键部分,用于描述电路的行为和逻辑。
在Verilog类中,我们可以使用各种语句和运算符来实现电路的功能。
例如,我们可以使用赋值语句(assign)来给信号赋值,使用条件语句(if-else)来实现逻辑判断,使用循环语句(for、while)来实现重复操作。
此外,Verilog类还支持多种逻辑运算符和算术运算符,如与(and)、或(or)、非(not)、加(add)、减(subtract)等。
Verilog类的一个重要应用是设计和实现各种数字逻辑电路,例如加法器、乘法器、寄存器、计数器等。
下面以一个简单的全加器为例来说明Verilog类的使用。
全加器是一种常用的组合逻辑电路,用于实现两个二进制数的相加操作。
它由两个半加器和一个或门组成。
每个半加器用于计算两个输入位的和(Sum)和进位(Carry),而或门用于将两个半加器的进位相加得到最终的进位。
以下是一个使用Verilog类实现的全加器的代码示例:```module FullAdder(input A, input B, input Cin, output Sum, output Cout);wire S1, C1, C2;HalfAdder HA1(.A(A), .B(B), .Sum(S1), .Carry(C1));HalfAdder HA2(.A(S1), .B(Cin), .Sum(Sum), .Carry(C2));or Gate(.A(C1), .B(C2), .Y(Cout));endmodulemodule HalfAdder(input A, input B, output Sum, output Carry);assign {Carry, Sum} = A + B;endmodule```在上述代码中,FullAdder模块是一个顶层模块,它实例化了两个HalfAdder模块和一个或门。
Verilog 模块的实例化转自:次元空间---*意*幻*由*的百度空间/cyzon/blog/item/e579b282a137889ff603a6d1.html实例化语句1. 例化语法一个模块能够在另外一个模块中被引用,这样就建立了描述的层次。
模块实例化语句形式如下:module_name instance_name(port_associations) ;信号端口可以通过位置或名称关联;但是关联方式不能够混合使用。
端口关联形式如下:port_expr / / 通过位置。
.PortName (port_expr) / / 通过名称。
例[1]:....module and (C,A,B);input A,B;output C;...and A1 (T3, A, B ); //实例化时采用位置关联,T3对应输出端口C,A对应A,B对应B。
and A2(//实例化时采用名字关联,.C是and 器件的端口,其与信号T3相连.C(T3),.A(A),.B(B));port_expr 可以是以下的任何类型:1) 标识符(reg 或net )如 .C(T3),T3为wire型标识符。
2) 位选择,如 .C(D[0]),C端口接到D信号的第0bit 位。
3) 部分选择,如 .Bus (Din[5:4])。
4) 上述类型的合并,如 .Addr({ A1,A2[1:0]}。
5) 表达式(只适用于输入端口),如 .A (wire Zire = 0 )。
建议:在例化的端口映射中请采用名字关联,这样,当被调用的模块管脚改变时不易出错。
2. 悬空端口的处理在我们的实例化中,可能有些管脚没用到,可在映射中采用空白处理,如:DFF d1 (.Q(QS),.Qbar ( ),.Data (D ) ,.Preset ( ), // 该管脚悬空.Clock (CK)); //名称对应方式。
对输入管脚悬空的,则该管脚输入为高阻Z,输出管脚被悬空的,该输出管脚废弃不用。
以下是一个简单的Verilog代码示例,用于实现一个2位二进制计数器:module counter (
input clk,
input reset,
output reg [1:0] count
);
always @(posedge clk or posedge reset) begin
if (reset) begin
count <= 2'b00;
end else begin
count <= count + 2'b01;
end
end
endmodule
这个模块包含一个名为counter的实例,它具有三个端口:clk、reset和count。
clk是时钟信号,reset是复位信号,count是2位二进制输出信号。
在模块内部,使用一个always块来定义一个始终执行的逻辑。
该块使用时钟信号clk和复位信号reset作为触发条件。
在每个时钟上升沿或复位信号上升沿时,执行该块中的逻辑。
在复位条件下,将计数器count的值清零。
在时钟上升沿时,将计数器count的值加1。
这样,每当时钟信号clk的上升沿到来时,计数器就会递增。
注意,由于Verilog是一种硬件描述语言,因此需要使用仿真工具来测试和验证代码的正确性。
在实际应用中,还需要根据具体的需求和硬件平台进行修改和优化。
【例3.1】4位全加器module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值endinitialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial//定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum);#160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out); endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A,B,C,D,F) input A,B,C,D; //模块的输入端口为A,B,C,Doutput F; //模块的输出端口为Fwire A,B,C,D,F; //定义信号的数据类型assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0,低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时,输出任意态endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值`timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形`timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbeginwave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值,如果sel为0,则out=a ;否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel);input a,b,sel;output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk);output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数if (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9,是则beginqout[3:0]<=0; //回0,并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5,则加1endelse//低位不为9,则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;alwaysbegincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend【例5.13】用casez描述的数据选择器module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d) begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成,则pass=1else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句,size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1,就执行下面的加法outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器`include "adder.v"module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为add assign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;always @(posedge clk) //进程1,always过程块beginif (!reset) qout= 4'h00; //同步清0,低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2,用持续赋值产生进位信号endmodule【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task//任务定义,注意无端口列表input//a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 调用任务my_and,需注意端口列表的顺序应与任务定义中的一致,这里的a,b,c 分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseendendmodule【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c); endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器(不含优先顺序)module code_83(din,dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入,输出为函数名本身casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义(注意无端口列表)input[3:0] opa; //函数只能定义输入端,输出端口为函数名本身reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过,opa应赋具体的数值factorial = i* factorial; //阶乘运算endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial//定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset));//调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2module serial2(q,a,clk);input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1 module paral1(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2 module paral2(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodulemodule mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not(notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2) case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2); endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1); endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and(a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);input a,b,sel;assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and(cout,a,b);xor(sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and (m1,a,b),(m2,b,cin),(m3,a,cin);xor(s1,a,b),(sum,s1,cin);or(cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a); endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器 module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器 `include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 -full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time - 22 -endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 -0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0,则进位输出肯定为00 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1,则进位输出肯定为11 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“?”表述的1位全加器进位输出UDP元件primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0,则进位输出肯定为00 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1,则进位输出肯定为11 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时,Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时,Y=in1- 24 -? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1?时,Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1,则不管其他端口为什么值,输出都为00 0 0 : ? : 0 ; //clk=0,锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1,锁存器的输出保持原值,用符号“-”表示endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来,输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来,输出Q保持原值? (??) : ? : - ; //时钟不变,输出也不变- 25 -endprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr s et : state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -endmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin//激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号,低电平有效- 27 -reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial//定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -endmodule【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin//激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM); endmodulemodule add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 -MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; s el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out);endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励波形定义clk =0; reset=0;- 30 -#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout); endmodulemodule counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法(1)门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule(2)数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule(3)行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 -reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1,则out=in;若en=0,则out为高阻态endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h);output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 -else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口,输出为函数名本身if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -4'd6: {a,b,c,d,e,f,g}=7'b1011111;4'd7: {a,b,c,d,e,f,g}=7'b1110000;4'd8: {a,b,c,d,e,f,g}=7'b1111111;4'd9: {a,b,c,d,e,f,g}=7'b1111011;default: {a,b,c,d,e,f,g}=7'bx;endcaseendendmodule【例9.10】奇偶校验位产生器module parity(even_bit,odd_bit,input_bus);output even_bit,odd_bit;input[7:0] input_bus;assign odd_bit = ^ input_bus; //产生奇校验位assign even_bit = ~odd_bit; //产生偶校验位endmodule【例9.11】用if-else语句描述的4选1 MUXmodule mux_if(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)beginif(sel==2'b00) out=in0;else if(sel==2'b01) out=in1;else if(sel==2'b10) out=in2;else out=in3;endendmodule【例9.12】用case语句描述的4选1 MUXmodule mux_case(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)begin- 35 -。
一、介绍Verilog HDL(硬件描述语言)是一种用于建模电子系统的硬件描述语言,常用于数字电路设计和验证。
在Verilog HDL中,实现两位乘法器是一个常见的需求,本文将介绍如何使用Verilog HDL设计和实现一个两位乘法器。
二、两位乘法器的原理两位乘法器是用于计算两个二进制数的乘积的电路。
对于两个n位的二进制数A和B,它们的乘积可以使用shift-and-add算法来计算。
具体来说,可以将A拆分为A[0]和A[1],B拆分为B[0]和B[1],然后计算A[0]*B[0]、A[0]*B[1]、A[1]*B[0]和A[1]*B[1],最后将它们的和相加即可得到A*B的结果。
三、Verilog HDL的实现使用Verilog HDL可以轻松地实现两位乘法器。
以下是一个简单的Verilog HDL代码实现:```verilogmodule two_bit_multiplier(input [1:0] A, // 两位输入input [1:0] B,output [3:0] result // 四位输出);reg [3:0] temp; // 临时变量用于保存计算的结果always (A or B) begintemp[0] = A[0] B[0]; // 计算A[0]*B[0]temp[1] = A[0] B[1]; // 计算A[0]*B[1]temp[2] = A[1] B[0]; // 计算A[1]*B[0]temp[3] = A[1] B[1]; // 计算A[1]*B[1]result = {temp[3],temp[2]+temp[1],temp[0]}; // 将计算结果相加并输出endendmodule```上述Verilog HDL代码描述了一个两位乘法器模块。
模块有两个2位输入A和B,以及一个4位输出result。
通过使用always块来计算A 和B的乘积,并将结果存储在temp变量中;将temp中的值相加并输出到result中。
Verilog多模块编程实例1. 介绍Verilog是一种硬件描述语言,被广泛应用于数字电路设计。
Verilog具有模块化设计的特点,可以将一个大型的电路设计分解成多个小模块,然后逐个实现和调试。
本文将介绍Verilog多模块编程的实例,以帮助读者了解如何使用Verilog进行模块化设计。
2. 模块化设计的优势模块化设计是一种将大型系统分解成多个小模块的设计方法。
在Verilog中,模块化设计有以下几个优势:- 提高代码可读性:通过将大型系统分解成多个小模块,可以提高代码的可读性和可维护性。
- 便于调试:每个小模块相对独立,可以单独调试和测试,提高了系统的可靠性和稳定性。
- 提高复用性:将功能相似的代码封装成模块,可以提高代码的复用性,减少代码冗余。
3. 多模块编程实例接下来,我们将通过一个简单的数字电路设计来演示Verilog多模块编程的实例。
假设我们要设计一个4位全加器电路,首先我们需要实现一个单位全加器模块,然后将四个单元全加器模块连接成一个4位全加器模块。
3.1 单位全加器模块我们定义一个单位全加器模块,代码如下:```verilogmodule Adder_unit (input a, b, cin,output sum, cout);assign {cout, sum} = a + b + cin;endmodule```在单位全加器模块中,我们定义了三个输入信号a、b、cin和两个输出信号sum、cout。
其中,sum表示相加的结果,cout表示进位。
在模块内部,我们通过assign语句实现了全加器的功能。
3.2 4位全加器模块接下来,我们将四个单位全加器模块连接成一个4位全加器模块,代码如下:```verilogmodule Adder_4bit (input [3:0] a, b,input cin,output [3:0] sum,output cout);Adder_unit U0(.a(a[0]), .b(b[0]), .cin(cin), .sum(sum[0]), .cout(cout0));Adder_unit U1(.a(a[1]), .b(b[1]), .cin(cout0), .sum(sum[1]), .cout(cout1)); Adder_unit U2(.a(a[2]), .b(b[2]), .cin(cout1), .sum(sum[2]), .cout(cout2)); Adder_unit U3(.a(a[3]), .b(b[3]), .cin(cout2), .sum(sum[3]), .cout(cout));endmodule```在4位全加器模块中,我们首先定义了四个输入信号a、b和一个输入信号cin,以及四个输出信号sum和一个输出信号cout。