“乘法公式——平方差公式”教案设计数学优秀教学设计案例实录能手公开课示范课
- 格式:doc
- 大小:45.50 KB
- 文档页数:8
平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。
2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。
二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。
2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。
3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。
三、教学重点与难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解和灵活运用。
四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。
2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。
3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。
4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。
5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。
6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。
7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。
8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。
五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。
2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。
3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。
《平方差公式》教学设计优秀10篇《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
以下是人见人爱的小编分享的10篇《平方差公式》教学设计,在大家参考的同时,也可以分享一下牛牛范文给您的好友哦。
初中数学平方差公式教案篇一一、学习目标:1、使学生了解运用公式法分解因式的意义;2、使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1、请看乘法公式(a+b)(a-b)=a2-b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b) (2)左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2-b2=(a+b)(a-b)2、公式讲解如x2-16=(x)2-42=(x+4)(x-4)。
9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2; (2)9a2- b2.例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2; (2)2x3-8x.补充例题:判断下列分解因式是否正确。
“乘法公式——平方差公式”教案设计数学优秀教学设计案例实录能手公开课示范课“乘法公式——平方差公式”数学教案设计课题第七章第六节平方差公式1、知识目标:知道平方差公式的结构特征~熟练掌握平方差公式~并能进行灵活应用。
教学 2、情感目标:体现学生为主体~使学生树立自信~密切师生情感~激发目标学生求知欲。
3、能力目标:培养学生善于观察~发现探索~归纳问题的能力~概括及应用所学知识~解决问题的能力~培养自学能力。
4、德育目标:在通过推导和应用平方差公式的过程中~让学生领悟从一般——特殊的研究方法和换元思想。
教学平方差公式及应用重点教学分清公式中的a、b~并理解公式中的广泛含义难点教学能识别平方差公式中的“a、b” 关键教学哈市素质教育初中数学二十字模式方法教学投影仪、小黑板手段环节教学内容师生互动设计意图一、一、复习提问复习旧知识设疑 1、多项式的乘法法则是什么, 为本节内容激情 2、请说出(m+a)(n+b)的结果。
生:口答问题作铺垫3、如果m=n且都用x表示~那么(m+a)(n+b)教师板书结将变成什么样式子,它的结果是什么, 果以旧引新~二、由练习导入新课,板书课题, 设疑激发学2师:观察如果(x+a)(x+b)=x+(a+b)x+ab,特殊教师启发学生求知欲乘法公式,中的左边中的a、b再有某种生观察发现特殊关系又将得到什么特殊结果呢,这问题并了解就是从本节课起要学习的内容——乘法此式是多项公式。
式乘法的特殊形式二、三、新课讲解1尝试 ?平方差公式探讨 1、公式的导入学生分组讨让学生尝试师问:讨论猜想(x+a)(x+b)中~a 与b可以存论~猜想出结探讨猜出结在什么样的特殊关系呢, 果果三、生猜想:a与b可能会有a=b,a=-b,a=0,b=0……生讨论后猜培养学生丰合作时出结果~教师富的想象发现师:问题要一个一个地解决~如果a=0或b=0给予肯定。
力~有利于时~(x+a)(x+b)将转化成什么形式, 培养学生的生:当a=0或b=0时~(x+a)(x+b)就转化成单创造智能。
平方差公式工程设计内容备注课时第 1 课时课型新课教具多媒体教学目标知识与能力运用平方差公式分解因式,能说出平方差公式的特点. 过程与方法会用提公因式法与平方差公式法分解因式.态度与情感培养学生的观察、联想能力。
重点运用平方差公式分解因式,能说出平方差公式的特点.难点培养学生的观察、联想能力,进一步了解换元的思想方法, 并能说出提公因式法在这类因式分解中的作用.教学手段方法类比法教学过程教师活动学生活动说明或设计意图一、复习引入1、对于等式x2+x = x (x+1):1) 如果从左到右看,是一种什么变形?2) 什么叫因式分解?这种因式分解的方法叫什么?3) 如果从右到左看,是一种什么变形?因式分解把一个多项式化成几个整式的积的形式,叫做因式分解.这种因式分解的方法叫提取公因式法.整式乘法因式分解和整式乘法是两种互为相反的变形.稳固旧知二、导入新课(a+b)(a-b) = a2-b2a2-b2 =(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积。
a2-b2 =(a+b)(a-b) 这就是用平方差公式进行因式分解整式乘法因式分解探索新知三、尝试练习1、因式分解〔口答〕:①x2-4=________②9-t2=_________2、以下多项式能用平方差公式因式分解吗?〔1〕x2+y2 〔2〕x2-y2〔3〕-x2+y2〔4〕-x2-y2(x+2)(x-2)(3+t)(3-t)〔1〕不能〔2〕能〔3〕能〔4〕不能四、例题讲解例3. 分解因式:(1) 4x2– 9 ;(2) (x+p)2– (x+q)2.分析:〔1〕4x2 = (2x)2,9=32,4x2-9 = (2x )2–3 2,〔2〕a2-b2 =(a+b)(a-b)把(x+p)和(x+q)看成一个整体,分别相当于公式中的a和b。
解〔1〕4x2 – 9 = (2x)2– 3 2= (2x+3)(2x-3)解:〔2〕(x+p)2– (x+q)2= [ (x+p) +(x+q)] [(x+p) –(x+q)]例4 . 分解因式:(1)x4-y4;(2) a3b–ab.分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了。
平方差公式教学优质课实录在数学的海洋中,平方差公式就像一颗璀璨的明珠,它不仅是代数运算中的重要工具,更是培养学生数学思维和解题能力的关键。
今天,让我们一同走进一堂精彩的平方差公式教学优质课,感受知识的魅力和教学的艺术。
上课铃声响起,教师微笑着走进教室,目光中充满了期待和鼓励。
“同学们,在我们之前的学习中,已经接触过了多项式的乘法运算。
今天,我们要一起探索一个非常有趣且实用的公式——平方差公式。
”教师简洁明了的开场白,瞬间吸引了学生们的注意力。
教师在黑板上写下两个式子:(a + b)(a b) 和 a² b²,问道:“同学们,大家思考一下,这两个式子之间有什么关系呢?”教室里顿时安静下来,学生们都陷入了沉思。
不一会儿,就有学生举手发言:“老师,我觉得它们好像相等。
”教师点头表示赞许,接着说:“那让我们一起来验证一下这位同学的猜想。
”教师开始引导学生进行多项式的乘法运算:“(a + b)(a b) = a×a a×b + b×a b×b = a² b²。
”通过一步步的计算,学生们清晰地看到了两个式子的等价关系。
“同学们,现在我们得到了(a + b)(a b) = a² b²,这就是我们今天要学习的平方差公式。
”教师一边说,一边在黑板上用醒目的字体写下了公式。
为了帮助学生更好地理解和记忆平方差公式,教师开始举例说明。
“假设 a = 5,b = 3,那么(5 + 3)(5 3) 就等于 5² 3²,即 25 9 =16 。
大家再想一想,如果 a = 10,b = 7 呢?”学生们纷纷拿起笔进行计算,很快就得出了答案。
在学生们对公式有了初步的认识后,教师又提出了一个问题:“同学们,平方差公式在实际解题中有什么用呢?我们来看下面这道题。
”教师在黑板上写下:计算 98×102 。
学生们看到这个题目,一开始有些不知所措。
《平方差公式》的优秀教学设计一、教学内容本节课的教学内容选自人教版小学数学五年级上册第五章《因数与积》中的平方差公式。
平方差公式是指两个数的平方差可以表示为它们的和与差的乘积的二倍,即a^2 b^2 = (a + b)(a b)。
二、教学目标1. 学生能够理解平方差公式的意义,并能够运用平方差公式进行计算。
2. 学生能够通过平方差公式,解决实际问题,提高解决问题的能力。
3. 学生能够培养合作交流的能力,提高学习的兴趣。
三、教学难点与重点1. 教学难点:平方差公式的推导过程和运用。
2. 教学重点:平方差公式的记忆和运用。
四、教具与学具准备1. 教具:黑板、粉笔、课件。
2. 学具:笔记本、练习本、铅笔。
五、教学过程1. 实践情景引入:让学生拿出自己的身高和座位距离,计算自己的座位面积。
2. 例题讲解:教师通过讲解一个简单的平方差问题,引导学生发现平方差公式的规律。
3. 随堂练习:学生独立完成一些平方差公式的练习题,巩固所学知识。
4. 小组合作:学生分组讨论,探索平方差公式的推导过程,并互相交流心得。
六、板书设计平方差公式:a^2 b^2 = (a + b)(a b)七、作业设计1. 题目:计算下列各题的平方差。
1) 9^2 4^22) 8^2 5^23) 7^2 3^22. 答案:1) 81 16 = 652) 64 25 = 393) 49 9 = 40八、课后反思及拓展延伸1. 课后反思:教师应反思本节课的教学效果,看学生是否掌握了平方差公式,是否能够运用到实际问题中。
2. 拓展延伸:教师可以引导学生进一步研究平方差公式的应用,如解决更复杂的实际问题,或者探索其他数学公式。
重点和难点解析:一、教学内容重点关注细节1. 平方差公式的推导过程:教师需要引导学生通过具体的例子,逐步推导出平方差公式,让学生理解并掌握公式的来源。
2. 平方差公式的运用:教师需要给出一些实际问题,让学生运用平方差公式进行计算,巩固所学知识。
1.7 平方差公式(一)●教学目标(一)教学知识点1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探索平方差公式的过程中,开展学生的符号感和推理能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特征判断题目能否使用公式.●教学方法探究与讲练相结合.使学生在计算的过程中发现规律,并运用自己的语言进行表达,用符号证明这个规律,并探索出平方差公式的结构特点,在老师的讲解和学生的练习中学会应用.●教具准备投影片四张第一张:做一做,记作(§1.7.1 A)第二张:例1 ,记作(§ B)第三张:例2 ,记作(§ C)第四张:练一练,记作(§ D)●教学过程Ⅰ.创设情景,引入新课[师]你能用简便方法计算以下各题吗?(1)2001×1999;(2)992-1[生]可以.在(1)中2001×1999 =(2000 +1)(2000-1) =20002-2000 +2000-1×1 =20002-12=4000000-1 =3999999,在(2)中992-1 =(100-1)2-1 =(100-1)(100-1)-1 =1002-100-100 +1-1 =10000-200 =9800.[师]很好!我们利用多项式与多项式相乘的法那么,将(1)(2)中的2001 ,1999 ,99化成为整千整百的运算,从而使运算很简便.我们不妨观察第(1)题,2001和1999 ,一个比2000大1 ,于是可写成2000与1的和,一个比2000小1 ,于是可写成2000与1的差,所以2001×1999就是2000与1这两个数的和与差的积,即(2000 +1)(2000-1);再观察利用多项式与多项式相乘的法那么算出来的结果为:20002-12 ,恰为这两个数2000与1的平方差.即(2000 +1)(2000-1) =20002-12.那么其他满足这个特点的运算是否也有类似的结果呢?我们不妨看下面的做一做.Ⅱ.使学生在计算的过程中,通过观察、归纳发现规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x +2)(x-2);(2)(1 +3a)(1-3a);(3)(x +5y)(x-5y);(4)(y +3z)(y-3z).观察以上算式,你发现什么规律?运算出结果,你又发现什么规律?再举两例验证你的发现?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每个因式都是两项.[生]除上面两个同学说的以外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是"x〞与"2〞这两个数的和与差的积;算式(2)是"1〞与"3a〞这两个数的和与差的积;算式(3)是"x〞与"5y〞的和与差的积;算式(4)是"y〞与"3z〞这两个数的和与差的积.[师]我们观察出了算式的结构特点.像这样的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你一定会探寻到答案.[生]解:(1)(x +2)(x-2)=x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a)=1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y)=x2-5xy +5xy-25y2=x2-25y2;(4)(y +3z)(y-3z)=y2-3yz +3zy-9z2=y2-9z2(如有必要的话可以让学生利用乘法分配律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分配律的重要作用以及转化的思想) [生]从刚刚这位同学的运算,我发现:即两个数的和与差的积等于这两个数的平方差.这和我们前面的一个简便运算得出同样的结果.即[师]你还能举两个例子验证你的发现吗?[生]可以.例如:(1)101×99 =(100 +1)(100-1) =1002-100 +100-12=1002-12=10000-1 =9999;(2)(-x +y)(-x-y) =(-x)(-x) +xy-xy-y2 =(-x)2-y2 =x2-y2.即上面两个例子,同样可以验证:两个数的和与差的积,等于它们的平方差.[师]为什么会有这样的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,所以相加后为零.只剩下这个数的平方差.[师]很好!你能用一般形式表示上述规律,并对规律进行证明吗?[生]可以.上述规律用符号表示为:(a +b)(a -b) =a 2-b 2①其中a,b 可以表示任意的数 ,也可以表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么可以对规律进行证明 ,即(a +b)(a -b) =a 2-ab +ab -b 2 =a 2-b 2 [师]同学们确实不简单用符号表示和证明我们发现的规律简捷明快. 你能给我们发现的规律(a +b)(a -b) =a 2-b 2起一个名字吗 ?能形象直观地反映出此规律的.[生]我们可以把(a +b)(a -b) =a 2-b 2叫做平方差公式.[师]大家同意吗 ?[生]同意.[师]好了 !这节课我们主要就是学习讨论这个公式的.你能用语言描述这个公式吗 ?[生]可以.这个公式表示两数和与差的积 ,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单 ,但要注意必须符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用 ,感受平方差公式给多项式乘法运算带来的方便 ,进一步熟悉平方差公式.出示投影片(§ B)[例1](1)以下多项式乘法中 ,能用平方差公式计算的是( )A.(x +1)(1 +x)B.(21a +b)(b -21a)C.(-a +b)(a -b)D.(x 2-y)(x +y 2)E.(-a -b)(a -b)F.(c 2-d 2)(d 2 +c 2)(2)利用平方差公式计算:(5 +6x)(5-6x);(x -2y)(x +2y);(-m +n)(-m -n).[生](1)中只有B 、E 、F 能用平方差公式.因为B.(21a +b)(b -21a)利用加法交换律可得(21a +b)(b -21a) =(b +21a)(b -21a),表示b 与21a 这两个数的和与差的积 ,符合平方差公式的特点;E.(-a -b)(a -b),同样可利用加法交换律得(-a -b)(a -b) =(-b -a)(-b +a),表示-b 与a 这两个数和与差的积 ,也符合平方差公式的特点;F.(c 2-d 2)(d 2 +c 2)利用加法和乘法交换律得(c 2-d 2)(d 2 +c 2) =(c 2 +d 2)(c 2-d 2) ,表示c 2与d 2这两个数和与差的积 ,同样符合平方差公式的特点.[师]为什么A 、C 、D 不能用平方差公式呢 ?[生]A 、C 、D 表示的不是两个数的和与差的积的形式.[师]下面我们就来做第(2)题 ,首先分析它们分别是哪两个数和与差的积的形式.[生](5 +6x)(5-6x)是5与6x 这两个数的和与差的形式;(x -2y)(x +2y)是x 与2y 这两个数的和与差的形式;(-m +n)(-m -n)是-m 与n 这两个数的和与差的形式.[师]很好 !下面我们就来用平方差公式计算上面各式.[生](5 +6x)(5-6x) =52-(6x)2 =25-36x 2;(x -2y)(x +2y) =x 2-(2y)2 =x 2-4y 2;(-m +n)(-m -n) =(-m)2-n 2 =m 2-n 2.[师]这位同学的思路非常清楚.下面我们再来看一个例题.出示投影片(记作§ C)[例2]利用平方差公式计算:(1)(-41x -y)(-41x +y); (2)(ab +8)(ab -8);(3)(m +n)(m -n) +3n 2.[师]同学们可先交流、讨论 ,然后各小组派一代表到黑板上演示.然后再派一位同学讲评.[生]解:(1)(-41x -y)(-41x +y) - -(-41x)与y 的和与差的积 =(-41x)2-y 2 - -利用平方差公式得(-41x)与y 的平方差 =161x 2-y 2 - -运算至最后结果(2)(ab +8)(ab -8) - -ab 与8的和与差的积=(ab)2-82 - -利用平方差公式得ab 与8的平方差=a 2b 2-64 - -运算至最后结果(3)(m +n)(m-n) +3n2 - -据运算顺序先计算m与n的和与差的积=(m2-n2) +3n2 - -利用平方差公式=m2-n2 +3n2 - -去括号=m2 +2n2 - -合并同类项至最简结果[生]刚刚这位同学的运算有条有理,有根有据,我觉得利用平方差公式计算必须注意以下几点:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.(2)要符合公式的结构特征才能运用平方差公式.(3)有些多项式与多项式的乘法外表上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必须最简.[师]同学们总结的很好!下面我们再来练习一组题.投影片(§ D)1.计算:(1)(a +2)(a-2);(2)(3a +2b)(3a-2b);(3)(-x +1)(-x-1);(4)(-4k +3)(-4k-3).2.把以下图左框里的整式分别乘(a +b),所得的积写在右框相应的位置上.解:1.(1)(a +2)(a-2) =a2-22 =a2-4;(2)(3a +2b)(3a-2b) =(3a)2-(2b)2 =9a2-4b2;(3)(-x +1)(-x-1) =(-x)2-12 =x2-1;(4)(-4k +3)(-4k-3) =(-4k)2-32 =16k2-9.2.(a +b)(a +b) =a(a +b) +b(a +b) =a2 +ab +ab +b2 =a2 +2ab +b2;(a-b)(a +b) =a2-b2;(-a +b)(a +b) =(b +a)(b-a) =b2-a2;(-a-b)(a +b) =-a(a +b)-b(a +b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情况,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同学们有何体会和收获呢?[生]今天我们学习了多项式乘法运算中的一个重要公式- -平方差公式即(a +b)(a-b) =a2-b2.[生]应用这个公式要明白公式的特征:(1)左边为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b可以是数,也可以是代表数的整式.[生]有些式子外表上不能用公式,但通过适当变形实质上能用公式.[师]同学们总结的很好!还记得刚上课的一个问题吗?计算992-1 ,现在想一想,能使它运算更简便吗?[生]可以.992-1可以看成99与1的平方差,从右往左用平方差公式可得:992-1 =992-12 =(99 +1)(99-1) =100×98 =9800.[师]我们发现平方差公式的应用是很灵活的,只要你准确地把握它的结构特征,一定能使你的运算简捷明了.Ⅴ.课后作业课本习题,第1题.Ⅵ.活动与探究有10位乒乓球选手进行单循环赛(每两人间均赛一场) ,用x1,y1顺次表示第1号选手胜与负的场数,用x2,y2顺次表示第2号选手胜与负的场数,……用x10,y10顺次表示第10号选手胜与负的场数.那么10名选手胜的场数的平方和与他们负的场数的平方和相等,即x12 +x22+… +x102 =y12 +y22+… +y102,为什么?经过:由于是单循环赛,每名运发动恰好参加9局比赛,即x i+y i=9(其中i =1、2、3、…10) ,在比赛中一人胜了,另一人自然败了,那么x1 +x2+… +x10 =y1 +y2 +… +y10,这两个隐含条件是解题的关键,从作差比拟入手.[结果]由题意知x i +y i =9(i =1、2、3、…10)且x1 +x2+… +x10 =y1 +y2+… +y10(x12 +x22+… +x102)-(y12 +y22+… +y102)=(x12-y12) +(x22-y22) +… +(x102-y102)=(x1 +y1)(x1-y1) +(x2 +y2)(x2-y2) +… +(x10 +y10)(x10-y10)=9[(x1-y1) +(x2-y2) +(x3-y3) +… +(x10-y10)]=9[(x1 +x2+… +x10)-(y1 +y2+… +y10)]=0所以,x12 +x22+… +x102 =y12 +y22+… +y102.●板书设计§平方差公式(一)解:(1)(x +2)(x-2) =x2-2x +2x-4 =x2-4;(2)(1 +3a)(1-3a) =1-3a +3a-9a2 =1-9a2;(3)(x +5y)(x-5y) =x2-5xy +5xy-25y2 =x2-25y2;(4)(y +3z)(y-3z) =y2-3yz +3zy-9z2 =y2-9z2.(a +b)(a-b) =a2-b2两数和与这两数差的积,等于它们的平方差.(a +b)(a-b) =a2-ab +ab-b2 =a2-b2.例1.(抓住平方差公式的特征,准确地利用平方差公式计算)例2.(对公式中a、b含义的理解,既可以是具体的数也可以是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方法计算:(1)79×81 (2)99×101×10001解:(1)原式 =(80-1)(80 +1) =802-1 =6399;(2)原式 =(100-1)(100 +1)(10000 +1)=(1002-12)(10000 +1)=(10000-1)(10000 +1)=100002-12=100000000-1 =99999999.[例2]计算:(1)(b -2)(b 2 +4)(b +2)(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]分析:(1)题可利用乘法交换律和结合律 ,先求(b -2)与(b +2)的积 ,所得结果再与(b 2 +4)相乘 ,可两次运用平方差公式;(2)题根据混合运算的运算顺序 ,先算括号里的其中(a +b)(a -b),(c -a)(a +c),(-c +b)(c +b)都可直接运用平方差公式计算.解:(1)(b -2)(b 2 +4)(b +2)=[(b -2)(b +2)](b 2 +4)=(b 2-4)(b 2 +4)=(b 2)2-42=b 4-16(2)[2a 2-(a +b)(a -b)][(c -a)(a +c) +(-c +b)(c +b)]=[2a 2-(a 2-b 2)][(c +a)(c -a) +(b -c)(b +c)]=[2a 2-a 2 +b 2][c 2-a 2 +b 2-c 2]=(a 2 +b 2)(b 2-a 2)=(b 2)2-(a 2)2=b 4-a 4[例3]计算: (1)(4x +32y)(-4x +32y) (2)(a +b -c)(a -b +c)(3)(x +3y)2(x -3y)2(x 2 +9y 2)2分析:(1)题中 ,可把相同的项放在对应的位置上 ,再把互为相反数的项放在对应的位置上 ,使之满足(a +b)(a -b),然后用平方差公式;(3)题先逆用积的乘方公式 ,然后用平方差公式.解:(1)(4x +32y)(-4x +32y) =(32y +4x )(32y -4x ) =(32y)2-(4x )2 =94y 2-161x 2(2)(a +b -c)(a -b +c)=[a +(b -c)][a -(b -c)]=a 2-(b -c)2=a 2-(b 2-2bc +c 2)=a 2-b 2 +2bc -c 2(3)(x +3y)2(x -3y)2(x 2 +9y 2)2=[(x +3y)(x -3y)(x 2 +9y 2)]2=[(x 2-9y 2)(x 2 +9y 2)]2=[x 4-81y 4]2=x 8-162x 4y 4 +6561y 8.。
《平方差公式》的教案《平方差公式》的教案范文(精选11篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案有助于顺利而有效地开展教学活动。
那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《平方差公式》的教案范文(精选11篇),希望能够帮助到大家。
《平方差公式》的教案篇1教学目标①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.③了解平方差公式的几何背景,体会数形结合的思想方法.教学重点与难点重点:平方差公式的推导及应用.难点:用公式的结构特征判断题目能否使用公式.教学准备卡片及多媒体课件教学设计引入同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.举例再举几个这样的运算例子.注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.验证我们再来计算(a+b)(a-b)=公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例归纳猜想验证用数学符号表示.注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.概括平方差公式及其形式特征教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.应用教科书第152页例1运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)(a+b)(a-b) a b a2b2 最后结果(3x+2)(3x-2) 2 (3x)2-22(b+2a)(2a-b)(-x+2y)(-x-2y)对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.教科书第152页例2计算:(1)10298(2)(y+2)(y-2)-(y-1)(y+5)此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.教科书第153页练习1、2练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.解释你能根据下面的两个图形解释平方差公式吗?多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.小结谈一谈:你这一节课有什么收获?注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.作业1.必做题:教科书第156页习题15.2第1题2.选做题:计算:(1)x2+(y-x)(y+x)(2)20082-20092007(3)(-0.25x-2y)(-0.25x+2y)(4)(a+ b)(a- b)-(3a-2b)(3a+2b)《平方差公式》的教案篇2教学内容:P108—110 平方差公式例1 例2 例3教学目的:1、使学生会推导平方差公式,并掌握公式特征。
平方差公式教案(优质课一等奖)八年级数学《15.2.1平方差公式》教学设计桂平市西山一中覃娟娟教学目标:1.经历探索平方差公式的过程,会推导平方差公式,并运用公式进行简单的运算.2.在数学活动中建立平方差公式模型,感受数学公式的意义和作用。
3.在计算的过程中发现规律,并能用符号表达,从而体会数学语言的简洁美.教学重点、难点:重点:平方差公式的推导及应用.难点:平方差公式的应用.教具准备:多媒体课件教学过程:一、创设情景,复习导入回顾思考:1、多项式乘法法则:( m + a )( n + b ) = m n + m b + a n + a bx+(a+b)x+ab 2、如果m=n,且都用 x 表示,那么上式就成为:(x+a)(x+b)=2二、新课引入1、计算下列各题,看谁做的又快又准确:(1)(x+y)(x-y)(2)(2a+b)(2a-b)2、教师提问:1)上述式中都有什么样的规律?2)能不能用字母来表现它呢?学生活动:讨论,并回答出教师提问.3、师生共同归纳出平方差公式22))((bababa-=-+4、师生共同探讨用面积说明平方差公式(课件演示图形).5、师生共同分析平方差公式的结构特征.6、练习:判断下列式子可用平方差公式计算吗?①(a−b)(b−a) ;② (a+2b)(2b+a);③-(a−b)(a+b) ;④ (-2x+y)(y−2x).三、例题讲解例1 运用平方差公式计算:(1) (5+6x)(5−6x); (2) (b+2a)(2a−b); (3) (-x+2y)(-x−2y).评析:1)认清结构,找准a、b2)运用平方差公式时,要紧扣公式的特征,找出相同的“项”和符号相反的“项”,然后应用公式;例2:计算:(1)102 × 98 ;(2)(y+2)(y-2)-(y-1)(y+5).评析:1)巧妙的化为公式形式;2)只有符合公式才能应用公式,否则,只能应用多项式与多项式乘法法则进行运算。
《平方差公式》教学设计教学目标:1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.教学重点:1、 学会平方差公式的推导和应用2、 理解和掌握平方差公式,并能灵活运用公式进行简单运算。
教学难点:能灵活运用公式进行运算.教学课时:一课时教学过程复习回顾:复习多项式乘法法则提问:(a+b )(m+n )=_____举例:计算(x + 2)( x +5)创设情境,导入新课问题:王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.96元,结果与售货员计算出的结果相同。
售货员惊讶地问:“这位同学,你怎么算得这么快?”王剑同学说:“我利用了数学课上刚学过的一个公式。
”你知道王剑同学用的是什么数学公式吗?学了本节之后,你就能解决这个问题了.探索新知,尝试发现一、拼图游戏1、边长为45的正方形去掉一个小正方形(边长为15)后剩下的面积=452-152=2025-225=18002、用割补的方法得右边长方形,其面积=(45+15)(45-15)=60×30=1800由此得:(45+15)(45-15)= 452-152二、计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= _____________ ;(2)(2+ m)(2- m)=____________ ;(3)(2x+3)(2x-3)=____________ .依照以上三道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:(a+b)(a- b)=a²- b².三、总结归纳,发现规律你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.22a-=b+-())(baab四、剖析公式,发现本质在平方差公式中,其结构特征为:(a+b)(a- b)=a²- b²(1)公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内第一项的平方减去第二项的平方.(3) 公式中的a和b 可以代表数,也可以是代数式.五、巩固运用,内化新知例1 利用平方差公式计算:(1)(5+6x)(5−6x); (2) (x+2y)(2y−x); (3) (−a+2b)(−a−2b).解: (1)(5+6x)(5−6x) (2) (x+2y)(2y−x) (3)(−a+2b)(−a−2b) =5 ²-(6x)² =(2y+x)(2y-x) =(-a) ²-(2b) ²=25-36x ² =(2y) ²-x² =a²-4b²=4y²-x²注意:当“第一(二)数”是一分数或是数与字母的乘积时, 要用括号把这个数整个括起来,最后的结果又要去掉括号。
《平方差公式》优质教学设计目录•课程介绍与目标•教学内容与方法•互动环节与课堂活动•巩固提高与拓展延伸•评价方式与标准•教学反思与改进建议01课程介绍与目标平方差公式概念及重要性平方差公式定义阐述平方差公式的基本形式,即$a^2-b^2=(a+b)(a-b)$,并解释公式中各项的含义。
平方差公式的应用说明平方差公式在代数运算、因式分解、化简求值等方面的重要应用,以及在解决数学问题中的关键作用。
要求学生掌握平方差公式的基本形式和应用方法,能够运用平方差公式进行代数运算和因式分解。
知识与技能过程与方法情感态度与价值观通过引导学生观察、比较、归纳等数学活动,培养学生的数学思维和解决问题的能力。
让学生感受数学公式的简洁美和对称美,激发学生学习数学的兴趣和热情。
030201教学目标与要求教材分析与选用教材分析对所选用的教材进行深入分析,明确教材的特点、优点和不足,为教学设计提供依据。
教材选用根据教学需要和学生的实际情况,选用合适的教材,确保教学内容的科学性和系统性。
同时,可以结合一些辅助材料或网络资源,丰富教学内容和形式。
02教学内容与方法通过实际问题引入平方差的概念,让学生明确学习目的。
引入概念利用多项式乘法法则,引导学生推导平方差公式,并理解公式中各项的含义。
推导公式通过举例验证平方差公式的正确性,加深学生的理解。
验证公式平方差公式推导过程计算(a+b)(a-b) 的结果,并说明平方差公式的应用。
例题一利用平方差公式计算(2x+3)(2x-3) 的结果,并解释计算过程。
例题二求(m+n)^2 -(m-n)^2 的值,并说明如何运用平方差公式进行化简。
例题三典型例题分析与解答提高练习设计一些稍复杂的题目,需要学生灵活运用平方差公式进行化简和计算。
基础练习设计一些简单的计算题目,让学生运用平方差公式进行计算。
拓展练习设计一些具有挑战性的题目,引导学生探索平方差公式的更多应用。
学生自主练习题目设计03互动环节与课堂活动小组合作探究平方差公式应用分组讨论将学生分成若干小组,每组4-5人,让他们共同探究平方差公式的应用。
教学设计课题14.2.1乘法公式-平方差公式授课班级学科数学课时安排 1 授课教师授课时间教学目标知识与技能:1.掌握平方差公式的结构特征。
2.会推导平方差公式,并能运用公式进行运算。
过程与方法: 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.2.重视对算理的理解,有意识地培养思维条理性和表达能力.情感、态度与价值观: 在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神.教学背景分析教学重点平方差公式的推导和应用。
教学难点理解平方差公式的结构特征,灵活应用平方差公式。
学情分析学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构,但是由于学生初次学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。
教学方法探究式教学与讲授式教学结合辅助媒体多媒体教学活动设计教师活动学生活动设计意图一、问题情景灰太狼开了租地公司, 他把一块边长为a米的正方形土地租给慢羊羊种植. 一天他对慢羊羊说:“我把这块地的一边减少b米,另一边增加b米,再继续租给你, 你也没吃亏,你看如何?”同学们如果你是慢羊羊你会答应吗?二、公式推导与证明比较两种结果,你能得出平方差公式吗?________________________________你能用整式的乘法运算证明此公式吗?T:这就体现了数学思想中的一种重要思想——数形结合思想。
三、得出公式及剖析结构(a+b)(a−b)=a2−b2两数和与这两数差的积,等于这两数的平方差。
公式结构(微课)四、公式应用符合条件直接用例1:计算(2y-x)(2y+x)解:原式=(2y)2-x2=4y2-x2练习1: (23m+5ab)(5ab-23m)创造条件转化用S:学生独立思考,表达自己的看法。
S:讨论,回答。
(1)都是两个数的和与这两个数的差的积;(2)结果都是这两个数的平方差。
S:思考,回答。
(a+b)(a-b)=a2-b2S:学生分析,教师板书,共同解答。
《平方差公式》优质教学设计《平方差公式》优质教学设计例1一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一.二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感.经过一个学期的培养,学生已经具备了小组合作、交流的能力.学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能.通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯.2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性.三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用.2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力.3.情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法.培养他们合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识.通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平.四、教学重难点教学重点:体会公式的发现和推导过程,理解公式的本质和结构特征,能用自己的语言说明公式及其特点;并会运用公式进行简单的计算.教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.五、信息技术应用思路1.本课运用了信息技术辅助教学,主要使用的技术有:PPT课件、几何画板.2.使用几何画板技术,演示利用动态绘图软件研究周期性快速切换、更改周期,形象演示图形变化,利用面积法推导平方差公式;在导入、难点突破、练习巩固等环节使用信息技术.3.预期效果:激发学生学习兴趣;找准并突破难点;提高课堂学习效率.整个教学过程用PPT节约了时间,使课容量适中;多媒体更能吸引学生的注意力,更利于课堂的完整.六、教学过程设计(一)创设情境,导入课题问题1:美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线.某城市广场呈长方形,长为1003米,宽997米.你能用简便的方法计算出它的面积吗?看谁算得快:师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.信息技术支持:PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题.(二)探索新知,尝试发现问题2:时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛.你会计算改造后的花坛的面积吗?计算下列多项式的积,你能发现什么规律?(1)(m+1)(m-1)= ;(2)(5+x)(5-x)= ;(3)(2x+1)(2x-1)= .师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.信息技术支持:PPT动画演示.结论是一个平方减去另一个平方的形式,效果十分鲜明.(三)总结归纳,发现新知问题3:依照以上三道题的计算回答下列问题:(1)式子的左边具有什么共同特征?(2)它们的结果有什么特征?(3)能不能用字母表示你的发现?问题4:你能用文字语言表示所发现的规律吗?教师提问,学生通过自主探究、合作交流,发现规律:两个数的和与这两个数的差的积,等于这两个数的平方差.师生活动:学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述.式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,信息技术支持:PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力.(四)数形结合,几何说理问题5:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?提示:a2-b2与(a+b)(a-b)都可表示该图形的面积.师生活动:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想.信息技术支持:PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识.(五)剖析公式,发现本质1.左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2.2.让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能数或代表式.师生活动:在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心.信息技术支持:通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题.(六)巩固运用,内化新知问题6:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2)(-m+n)(m-n).问题7:利用平方差公式计算:(1)(3x +2y)(3x-2y);(2)(-7+2m2)(-7-2m2).师生活动:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.信息技术支持:PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写.(七)拓展应用,强化思维问题8:利用平方差公式计算情景导航中提出的问题:即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991.问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.师生活动:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力.信息技术支持:PPT展示书写步骤,有利于节省时间.(八)总结概括,自我评价问题10:这节课你有哪些收获?还有什么困惑?提示:从知识和情感态度两个方面加以小结.师生活动:使学生对本节课的`知识有一个系统全面的认识,分组讨论后交流.信息技术支持:PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解.(九)课后作业1.必做题:课本P36习题2.1A组1、2.2.选做题:课本P36习题2.1B组1、2.作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.七、教学反思1.本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心.2.多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质.3.信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性.教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性.信息技术的应用大大提高了课堂效率.《平方差公式》优质教学设计例21.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)2.掌握平方差公式的应用.(重点、难点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】直接应用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】应用平方差公式进行简便运算利用平方差公式计算:(1)2013×1923;(2)13.2×12.8.解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型三】运用平方差公式进行化简求值先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.变式训练:见《学练优》本课时练习“课堂达标训练”第14题【类型四】平方差公式的几何背景如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型五】平方差公式的实际应用王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a +4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.2.平方差公式的运用学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。
平方差公式教案(公开课)章节一:平方差公式的引入1. 教学目标让学生通过实际例子,感受平方差公式的实际意义,培养学生的数学思维能力。
2. 教学内容通过具体的数字例子,引导学生发现平方差公式的规律。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生计算它们的差值。
(2) 学生发现,这些差值都可以表示为平方差的形式,如2^2 1^2, 3^2 2^2, 4^2 3^2等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的理解和掌握程度。
章节二:平方差公式的应用1. 教学目标让学生掌握平方差公式的应用,能够灵活运用平方差公式解决实际问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的应用。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的应用理解和掌握程度。
章节三:平方差公式的拓展1. 教学目标让学生掌握平方差公式的拓展,能够运用平方差公式解决更复杂的问题。
2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的拓展。
3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。
(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。
4. 教学评价通过具体的数字例子,检查学生对平方差公式的拓展理解和掌握程度。
章节四:平方差公式的运用1. 教学目标让学生能够灵活运用平方差公式解决实际问题,提高学生的数学应用能力。
教学设计说明
我说课的内容是:《乘法公式——平方差公式》。
本章的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。
而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。
因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。
因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。
本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。
乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
本节课设计了一系列学生活动,老师作为辅导者引领学生进入本节的知识结构中,展现了学生自主学习的特点,在思考、讨论、口答、小结等环节中掌握新知。