压弯构件的整体稳定
- 格式:ppt
- 大小:350.50 KB
- 文档页数:49
《钢结构》网上辅导材料受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。
一、强度和刚度计算1.强度计算强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。
(1)抗弯强度荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下:图1 梁正应力的分布f,荷载继续增1)弹性工作阶段荷载较小时,截面上各点的弯曲应力均小于屈服点yf(图1b)。
加,直至边缘纤维应力达到y2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a的区域,其应力f。
截面的中间部分区域仍保持弹性(图1c),此时梁处于弹塑性工作阶段。
σ为屈服应力y3)塑性工作阶段当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。
当弹性核心完全消失(图1d)时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。
计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。
若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。
因此规范规定有限制地利用塑性。
梁的抗弯强度按下列公式计算:单向弯曲时f W M nxx x≤=γσ(1)双向弯曲时f W M W M nyy y nx x x≤+=γγσ(2)式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny —梁对x 轴和y 轴的净截面模量;y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;f —钢材的抗弯强度设计值。
当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。
需要计算疲劳的梁,宜取0.1==y x γγ。
(2)抗剪强度主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。
v wf It VS≤=τ (3)式中 V —计算截面沿腹板平面作用的剪力设计值;S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度;f v —钢材的抗剪强度设计值。
拉弯和压弯构件的强度与稳定计算1.拉弯和压弯构件的强度计算考虑部分截面发展塑性,《规范》规定的拉弯和压弯构件的强度计算式f W M A N nxx x n ≤+γ (6-1)承受双向弯矩的拉弯或压弯构件,《规范》采用了与式(6-1)相衔接的线性公式f W M W M A Nnyy y nx x x n ≤++γγ (6-2)式中:n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。
当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过yf /23515时,应取x γ=1.0。
对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即不考虑截面塑性发展,按弹性应力状态计算。
2.实腹式压弯构件在弯矩作用平面内的稳定计算目前确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。
按边缘屈服准则推导的相关公式y Ex x x xx f N N W M AN =⎪⎪⎭⎫⎝⎛-+ϕϕ11(6-4)式中:x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。
边缘纤维屈服准则认为当构件截面最大受压纤维刚刚屈服时构件即失去承载能力而发生破坏,更适用于格构式构件。
实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。
因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。
弯矩沿杆长均匀分布的两端铰支压弯构件,《规范》采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,算出了近200条压弯构件极限承载力曲线。
然后《规范》借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ(6-5)式中:px W ——截面塑性模量。
压弯构件稳定计算(1)概述压弯构件实际上就是轴力与弯矩共同作用的构件,也就是轴心受力构件与受弯构件的组合,典型的两种压弯构件如图所示。
同其他构件一样,压弯构件也需同时满足正常使用及承载能力两种极限状态的要求,即正常使用极限状态:刚度条件;承载能力极限状态:强度、整体稳定、局部稳定.(2) 类型与截面形式单向压弯构件: 只绕截面一个形心主轴受弯;双向压弯构件: 绕两个形心主轴均有弯矩作用。
弯矩由偏心轴力引起的压弯构件也称作偏压构件。
截面形式:同轴心受力构件一样,分实腹式截面与格构式截面。
实腹式:型钢截面与组合截面格构式:缀条式与缀板式☻按截面组成方式分为型钢(a、b),钢板焊接组合截面型钢(c、g),组合截面(d、e、f、h、i)☻按截面几何特征分为开口截面,闭口截面(g、h、i、j)☻按截面对称性分为单轴对称截面(d、e、f、n、p),双轴对称截面(其余各图)☻按截面分布连续性分为实腹式截面(a~j)格构式截面(k~p)(3)破坏形式强度破坏、整体失稳破坏和局部失稳破坏。
强度破坏:截面的一部分或全部应力都达到甚至超过钢材屈服点的状况。
整体失稳破坏:单向压弯构件:弯矩平面内失稳:极值失稳,应考虑效应(二阶效应)。
弯矩平面外失稳:弯扭变形,分岔失稳。
双向压弯构件:一定伴随扭转变形,为分岔失稳。
7.2.1 强度计算两个工作阶段,两个特征点。
弹性工作阶段:以边缘屈服为特征点(弹性承载力);弹塑性工作阶段:以塑性铰弯矩为特征点(极限承载力)。
7.2.2 极限承载力与相关条件联立以上两式,消去η,则有如下相关方程7.2.3 为计算方便,改用线性相关方程, 得《规范》公式 :关于±号的说明:如右图所示对于单对称截面,弯矩绕非对称轴作用时,会出现图示两种控制应力状况。
7.2.4 刚度条件:一般情况,刚度由构件的长细比控制,即:7.3.1 概述实腹式压弯构件在轴力及弯矩作用下,即可能发生弯矩作用平面内的弯曲失稳,也可能发生弯矩作用平面外的弯曲扭转失稳(类似梁)。