第三章 玻璃体
- 格式:ppt
- 大小:5.06 MB
- 文档页数:110
第三章熔体和玻璃体§3-1 熔体的结构-聚合物理论一、聚合物的形成硅酸盐熔体聚合物的形成可分为三个阶段:(一)、石英颗粒分化熔体化学键分析:离子键与共价键性(约52%)混合。
Si-O键:σ、п 故具有高键能、方向性、低配位特点;R-O键:离子键键强比Si-O键弱 Si4+能吸引O2-;在熔融SiO2中,O/Si比为2:1,[SiO4]连接成架状。
若加入Na2O则使O/Si比例升高,随加入量增加,O/Si比可由原来的2:1逐步升高到4:1,[SiO4]连接方式可从架状变为层状、带状、链状、环状直至最后断裂而形成[SiO4]岛状,这种架状[SiO4]断裂称为熔融石英的分化过程。
由于Na+的存在使Si-O-Na中Si-O键相对增强,与Si相联的桥氧与Si的键相对减弱,易受Na2O的侵袭,而断裂,结果原来的桥氧变成非桥氧,形成由两个硅氧四面体组成的短链二聚体[Si2O1]脱离下来,同时断链处形成新的Si-O-Na键。
邻近的Si-O键可成为新的侵袭对象,只要有Na2O存在,这种分化过程将会继续下去。
分化的结果将产生许多由硅氧四面体短链形成的低聚合物,以及一些没有被分化完全的残留石英骨架,即石英的三维晶格碎片[SiO2]n 。
(二)、各类聚合物缩聚并伴随变形由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚。
[Si04]Na4+[Si2O7]NA6=[Si3O10]Na8+Na2O(短链)2[Si3O10]Na8=[SiO3]6Na12+2Na2O(三)、在一定时间和一定温度下,聚合⇌解聚达到平衡缩聚释放的Na2O又能进一步侵蚀石英骨架,而使其分化出低聚物,如此循环,最后体系出现分化⇌缩聚平衡。
熔体中存在低聚物、高聚物、三维晶格碎片、游离碱及石英颗粒带入的吸附物,因而熔体是不同聚合程度的聚合物的混合物,这些多种聚合物同时存在便是熔体结构远程无序的实质。
玻璃体的结构和作用
玻璃体的结构和作用
玻璃体为无色透明的胶状体,半固体状。
玻璃体是眼屈光介质的组成部分,并对晶状体、视网膜等周围组织有支持、减震和代谢作用。
因此,在外科手术中,一旦发生玻璃体丢失,就容易造成视网膜脱落。
玻璃体主要成分是胶质和水,水占了玻璃体体积的90%左右。
胶质的主要结构成分是呈细纤维网支架的Ⅱ型胶原和交织于其问的透明质酸黏多糖。
正常状况下,玻璃体呈凝胶状态,其内没有血管,它所需的营养来自房水和脉络膜,因而代谢缓慢,不能再生,具有塑形性、黏弹性和抗压缩性。
玻璃体前有一凹面,正好能容纳晶状体,使晶状体与玻璃体较好地紧密粘连。
随着年龄增长,玻璃体的胶原纤维支架结构塌陷或收缩,晶状体与玻璃体的粘连性也逐渐变差,因此在老年性白内障手术时很容易将它们分开。
3结构众所周知,微晶玻璃是由晶相和玻璃相组成的。
晶相是多晶结构,晶粒细小,比一般结晶材料的晶体要小得多,一般为0.1~0.5μm,晶体在微晶玻璃中为空间取向分布。
在晶体之间残留的玻璃相,玻璃相把数量巨大、粒度细微的晶体结合起来。
在晶体含量方面可以从不含晶体的玻璃,逐渐变化到含有90%以上微晶的多晶体。
而玻璃相的数量可以从5%变化到50%以上。
晶化后残余玻璃相是很稳定的,在一般条件下不会析晶。
因此,微晶玻璃是晶体和玻璃体的复合材料,其性能由两者的性质及数量比例决定。
由于微晶玻璃的结构来源于原始玻璃的组成、结构、分相、析晶以及玻璃熔体的成核和晶体生长过程,因此,本章首先从玻璃的基础知识开始讨论。
3.1玻璃的定义、通性与结构3.1.1玻璃的定义3.1.1.1 广义上的定义玻璃是呈现玻璃转变现象的非晶态固体。
所谓玻璃转变现象是指当物质由固体加热或由熔体冷却时,在相当于晶态物质熔点绝对温度的1/2~2/3温度附近出现热膨胀、比热容等性能的突变,这一温度称为玻璃转变温度。
3.1.1.2 狭义上的定义玻璃是一种在凝固时基本不结晶的无机熔融物,即通常所说的无机玻璃,最常见的为硅酸盐玻璃。
3.1.2玻璃的通性3.1.2.1各向同性硅酸盐熔体内形成的是相当大的、形状不规则的近程有序、远程无序的离子聚合结构,玻璃态结构类似于硅酸盐熔体结构。
因此,玻璃和非晶态的原子排列都是近程有序、远程无序的,结构单元不像晶体那样按定向排列,它们在本质上呈各向同性,例如玻璃态物质各方向的硬度、弹性模量、热膨胀系数、折射率、导电率等都是相同的。
因此,玻璃的各向同性是统计均质结构的外在表现。
3.1.2.2介稳性玻璃在熔体冷却过程中,黏度急剧增大,质点来不及作有规则排列,释放能量较结晶潜热(凝固热)小,因此,玻璃态物质比相应的结晶态物质含有较大的能量。
玻璃不是处于能量最低的稳定状态,而是处于能量的介稳状态,如图3-1所示。
3.1.2.3无固定熔点玻璃态物质由固体转变为液体是在一定的温度范围(软化温度范围)内进行的,不同于结晶态物质,它没有固定的熔点。
玻璃体是眼球中的一种重要的结构,位于眼球后部的后段。
它是一个透明的、无血管的胶状物质,占据了眼球的大部分体积。
玻璃体的主要功能是支撑和稳定眼球,同时也对视觉过程有重要影响。
玻璃体在发育过程中,由视网膜色素上皮细胞分泌形成。
它主要由水、胶原蛋白和透明质酸等成分组成,其中胶原蛋白是主要成分之一。
玻璃体的结构和功能与水密切相关,随着年龄的增长,玻璃体中的水分含量会逐渐减少,导致玻璃体的质地和形态发生变化。
在正常情况下,玻璃体是透明的,但是当玻璃体发生混浊或变性时,会导致视力模糊或出现飞蚊症等症状。
常见的玻璃体疾病包括玻璃体出血、玻璃体后脱离、玻璃体变性等。
治疗玻璃体疾病的方法包括药物治疗、激光手术和玻璃体切除术等。
第三章熔体与玻璃体内容提要:本章主要叙述硅酸盐熔体结构的聚合物理论。
熔体的性质:粘度和表面张力。
介绍了玻璃的四个通性。
玻璃形成的动力学手段——3T 图(时间-温度-转变)的绘制和形成玻璃的结晶化学条件。
玻璃结构的主要学说:晶子假说和无规则网络假说的主要实验依据和论点。
硅酸盐玻璃和硼酸盐玻璃结构与性质。
熔体结构的聚合物理论:硅酸盐熔体聚合物的形成可以分为三个阶段。
初期由于Si—O键具有高键能、方向性和低配位等特点,当石英晶体受碱作用而分化,随O/Si比增加,使部分桥氧断裂成非桥氧,从而使高聚体石英分化为三维碎片、高聚物、低聚物和单体;中期各类聚合物缩聚并伴随变形;后期在一定时间和温度下,聚合解聚达到平衡。
产物中有低聚物[Si3O10]8-、高聚物[Sin O13+n])1(2+n、三维碎片[SiO2]n、吸附物和游离碱(MO)。
因而熔体是不同聚合程度的各种聚合物的混合物。
聚合物的种类、大小和数量随熔体的组成和温度而变化。
多种聚合物同时并存而不是一种独存是构成熔体结构近程有序而远程无序的必然结果,是熔体结构远程无序的实质。
熔体的粘度:熔体流动的特点是在切向力作用下,产生的剪切速度dxdv与剪切应力σ成正比。
因而属于粘性流动。
σ=ηdxdv式中η定义是相距一定距离的两个平行平面以一定速度相对移动所需的力。
硅酸盐熔体粘度随温度的变化是玻璃加工工艺的基础。
熔体温度升高导致粘度下降。
硅酸盐熔体粘体与组成的关系是粘度随碱性氧化物含量增加而剧烈降低。
这是因为粘度随O/Si比值的上升而下降,硅氧四面体网络连接由三维逐渐向二维、二维过渡,随着低聚物比例增高,熔体粘度逐渐下降。
在含碱金属的硅酸盐熔体中,当Ⅰ、R+对粘度的影响:与熔体中的O/Si比有关。
O/Si比较低时,加入正离子半径越小,对降低粘度的作用越大,粘度按Li2O、Na2O、K2O次序增加。
O/Si比较高时,[SiO4]连接方式已接近岛状,四面体在很大程度上依靠R—O相连,此时键力最大的Li+具有最高的粘度,粘度按Li2O、Na2O、K2O顺序递减。