当前位置:文档之家› 碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析)
碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析)

发布时间:2009-5-30 13:46:34 关闭该页

一、概述

碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。

铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。

1、共析钢等温冷却时的显微组织

共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织

为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。

图1 图2

3、亚共析钢和过共析钢连续冷却时的显微组织

亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。

当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。

因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。

当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。

过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。

4、各组织的显微特征

(1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。

(2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3);

图3 托氏体+马氏体

图4 上贝氏体+马氏体

(3)贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态:

A、上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为与束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行,如图4。

B、下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受浸蚀,在显微镜下呈黑色针状(如图5)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。

C、粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形成温度范围大致在上贝氏体转变温度区的上部,由铁素体和它所包围的小岛状组织所组成。

(4)马氏体(M):是碳在a-Fe中的过饱和固溶体。马氏体的形态按含碳量主要分两种,即板条状和针状(如图6、图7所示)

图5 下贝氏体

图6 回火板条马氏体

A、板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相同的细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。

B、针状马氏体是碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

图7 针状马氏体+残余奥氏体

图8 马氏体+粒状渗碳体

(5)残余奥氏体(A残)是含碳量大于0.5%的奥氏体淬火时被保留到室温不转变的那部分奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态。在图8表示含碳1.2%的碳钢正常淬火(780℃加热),其组织为马氏体+粒状渗碳体+少量残余奥氏体。

(6)钢的回火组织与性能

A、回火马氏体。是低温回火(150~250℃)组织。它保留了原马氏体形态特征。针状马氏体回火析出了极细的碳化物,容易受到浸蚀,

在显微镜下呈黑色针状。体温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色。低温回火后可以部分消除淬火钢的内应力,增加韧性,同时仍能保持钢的高硬度。

B、回火屈氏体。是中温回火(350~500℃)组织。回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相对渗碳体则析出在其中,呈极细颗粒状,用光学显微镜极难分辨(如图9所示)。中温回火后有很好的弹性和一定的韧性。

图9 回火托氏体

图10 回火索氏体

C、回火索氏体:是高温回火(500~650℃)组织。回火索氏体

是铁素体与较粗的粒状渗碳体所组成的机械混合物。碳钢回火索氏体中的铁素体已经通过再结晶,呈等轴细晶粒状。经充分回火的索氏体已没有针的形态。在大于500倍的光镜下,可以看到渗碳体微粒(如图10所示)。回火索氏体具有良好的综合机械性能。

应当指出,回火屈氏体、回火索氏体是淬火马氏体回火时的产物,它们的渗碳体是颗粒状的,且均匀地分布在铁素体基体上;而淬火索氏体和淬屈氏体是奥氏体过冷时直接形成的,其渗碳体是呈片状。回火组织较淬火组织在相同硬度下具有较高的塑性与韧性。

【材料课件】实验九碳钢热处理基本组织观察

实验九碳钢热处理基本组织观察 目的 1.认识碳钢经不同方式热处理后的典型显微组织特征; 2.了解热处理工艺对组织的影响。 一、相关知识 1.TTT曲线 2.碳钢的退火和正火 碳钢的退火组织也就是铁碳合金的平衡组织,以前的实验已经观察过。 亚共析钢的正火组织形式上很象退火组织,这是的珠光体层片较细,整体为灰黑色,理论上讲,铁素体的含量应比平衡状态略少,相差并不明显。 过共析钢一般进行球化退火,得到球化珠光体,正火仅用于消除二次渗碳体网,得到颗粒状的碳化物和细片状珠光体,紧接着进行球化退火。 3.碳钢的等温淬火组织 上贝氏体:在500-350℃的等温转变组织,铁素体片在原奥氏体晶界向内发展,成羽毛状,片间间断分布碳化物。为了清楚看到这种组织,在生成部分上贝氏体后立即快速冷却,其它部分是马氏体。 上贝氏体:在320-250℃的等温转变组织,铁素体片在原奥氏体晶内成透镜状,或象竹叶状。片内部有非常细小分布碳化物,整体浸蚀后为暗灰色。为了清楚看到这种组织,在生成部分贝氏体后立即快速冷却,其它部分是马氏体。 4.碳钢的淬火组织 小试样奥氏体化后水冷,可以全部淬透,得到马氏体和少量残余奥氏体。 低碳马氏体(板条马氏体):在光学显微镜下,板条马氏体为一束束相互平行的细长条状,在一个奥氏体晶粒内可有几束不同取向的马氏体群。

高碳马氏体(针状马氏体):在光学显微镜下,片状马氏体呈针状或竹业状,片间互不平行呈一定角度,其立体形态为双凸透镜状。针的粗细决定于奥氏体晶粒的大小,通常其针细小,在光学显微镜下不能看清,称为隐针马氏体。T10正常加热温度为760℃,若过热(温度820℃,为能了解其形态),就可看到其针状的形貌。 5.碳钢的回火组织 回火马氏体:形状同淬火态,但内部有碳化物,浸蚀后的颜色变暗。 回火曲氏体:原马氏体形态不可见,弥散的Fe3C析出,组织一般为灰暗色。 回火索氏体:在铁素体的基体上分布小颗粒状的渗碳体。 6.低碳钢渗碳后炉冷组织 920℃渗碳后,表层的含碳量接近Acm线,逐渐降低,到心部为原始的低碳(或纯铁),炉冷后得到平衡组织,从表到里,经过过共析(珠光体+网状渗碳体)、共析(珠光体)、亚共析(铁素体+珠光体)的逐渐过渡。实用材料往往可直接淬火,或渗碳后空冷正火,表层部分的渗碳体为颗粒状。 二、实验内容 ①.观察45钢的正火组织,铁素体+索氏体。 ②.观察等温淬火组织,认识上、下贝氏体形貌特征。 ③.观察淬火组织认识马氏体形态:20钢得到的板条马氏体,由45钢得到的混合马氏 体,T10钢过热淬火得到的粗大马氏体针。 ④.正常淬火回火组织:T10钢正常淬火回火的组织为未溶颗粒状碳化物+回火隐针马 氏体。 ⑤.调质:中碳钢淬火后高温回火得到的回火索氏体。 ⑥.渗碳后炉冷组织:从组织了解渗碳后碳含量的大致分布。 三、实验报告要求 画出5个以上观察到的组织示意图,注明材料、热处理过程、所得到的组织。

碳钢热处理与金相观察实验指导参考书(1)

目录 前言 --------------------------------------------------------------------------------- 2实验一金属的磨片实验 --------------------------------------------------------- 3实验二铁碳合金的平衡组织观察 ---------------------------------------- 12 实验三钢的热处理综合实验 ------------------------------------------------- 20

前言 本实验指导书内容侧重于金相实验技术基本操作方法、热处理及金相显微组织的观察,使学生在金相实验基本技能方面得到初步训练并有利于巩固和深化课堂学到的知识,而热处理综合实验不仅能使学生建立起完整的知识体系,还能有效地提高学生的整体思维能力和总结概括能力。

实验一金属的磨片实验 一、实验目的 1 掌握金相显微试样的制备过程和基本方法,并观察、认识其金相显微组织; 2 初步学会用比较法测定工业纯铁的晶粒度。 二、实验仪器及材料 1 仪器:台式金相显微镜、预磨机、抛光机、吹风机等。 2 材料;45 钢待磨试样(O12×15)每人一块;各号金相砂纸(或水磨砂纸)一套;腐蚀剂;4%硝酸酒精;制备好的工业纯铁试样,棉球、镊子等。 三、实验内容 在利用金相显微镜观察、分析和研究金属材料的金相显微组织时,需要在该材料的典型部位截取样块,然后通过一系列的制备过程,制成符合要求的金相显微试样。即在金相显微镜下可以观察到很清晰的金相显微组织,其整个过程即为磨片。磨片的方法与步骤如下: 1 .取样 ①取样的部位及磨面的选择 根据被检验金属材料或零件的特点,加工工艺及研究目的进行选择,如:研究另件破裂的原因时,应在破裂部位取样,再在离破裂处较远的部位取样,以做比较。研究铸造合金时,由于组织不均匀,从铸件表层到中心必须分别截取几个样品。 研究轧材时,如研究材料表层的缺陷、非金属夹杂物的分布等。应在垂直于轧制方向上截取横向试样.如研究夹杂物的形状、类形,材料的的形变程度、晶粒拉长的程度、带状组织等,应在平行于轧制方向上截取纵向试样。 研究焊缝组织时,应在焊缝及热影响区周围取样。 研究热处理后的零件时,固其组织较均匀,可任选一断面试样。若研究氧化、脱碳表面处理(如渗碳)的情况,则应在横断面上观察。

金属材料金相热处理检验方法标准汇编

金属材料金相热处理检验方法标准汇编 一、金属材料综合检验方法 GB/T4677.6—1984金属和氧化覆盖层厚度测试方法截面金相法 GB/T6394—2002金属平均晶粒度测定方法 GB/T6462—2005金属和氧化物覆盖层厚度测量显微镜法 GB/T13298—1991金属显微组织检验方法 GB15735—2004金属热处理生产过程安全卫生要求 GB/T15749一1995定量金相手工测定方法 GB/T18876.1—2002应用自动图像分析测定钢和其他金属中金相组织、夹杂物含量和级别的标准试验方法第1部分:钢和其他金属中夹杂物或第二相组织含量的图像分析与体视学测定 二、钢铁材料检验方法 GB/T224一1987钢的脱碳层深度测定法 GB/T225—1988钢的淬透性末端淬火试验方法 GB/T226—1991钢的低倍组织及缺陷酸蚀检验法 GB/T227—1991工具钢淬透性试验方法 GB/T1814—1979钢材断口检验法 GB/T1979—2001结构钢低倍组织缺陷评级图 GB/T4236一1984钢的硫印检验方法 GB/T4335—1984低碳钢冷轧薄板铁素体晶粒度测定法 GB/T4462—1984高速工具钢大块碳化物评级图 GB/T6401—1986铁素体奥氏体型双相不锈钢中а-相面积含量金相测定法 GB/T7216—1987灰铸铁金相 GB/T9441—1988球墨铸铁金相检验 GB/T9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 GB/T11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T13299—1991钢的显微组织评定方法 GB/T13302—1991钢中石墨碳显微评定方法 GB/T13305—1991奥氏体不锈钢中а-相面积含量金相测定法 GB/T13320—1991钢质模锻件金相组织评级图及评定方法 GB/T13925—1992铸造高锰钢金相 GB/T14979—1994钢的共晶碳化物不均匀度评定法 GB/T15711—1995钢材塔形发纹酸浸检验方法 GB/T16923—1997钢件的正火与退火 GB/T16924—1997钢件的淬火与回火 GB/T18683—2002钢铁件激光表面淬火 YB/T130—1997钢的等温转变曲线图的测定 YB/T153一1999优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图 YB/T169一2000高碳钢盘条索氏体含量金相检测方法 YB/T4002—1991连铸钢方坯低倍组织缺陷评级图 YB/T4003—1997连铸钢板坯低倍组织缺陷评级图 YB/T4052—1991高镍铬无限冷硬离心铸铁轧辊金相检验 YB/T5127—1993钢的临界点测定方法(膨胀法) YB/T5128—1993钢的连续冷却转变曲线图的测定方法(膨胀法)

碳钢热处理后的组织金相分析

4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 ??托氏体+马氏体 图4 ??上贝氏体+马氏体 (3)贝氏体(B)为奥氏体的中温转变产物,它也是铁素体与渗碳体的两相混合物。在显微形态上,主要有三种形态: A、上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为与束的铁素体条向奥氏体晶内伸展,具有羽毛状特征。在电镜下,铁素体以几度到十几度的小位向差相互平行,渗碳体则沿条的长轴方向排列成行,如图4。 B、下贝氏体是在片状铁素体内部沉淀有碳化物的两相混合物组织。它比淬火马氏体易受浸蚀,在显微镜下呈黑色针状(如图5)。在电镜下可以见到,在片状铁素体基体中分布有很细的碳化物片,它们大致与铁素体片的长轴成55~60°的角度。 C、粒状贝氏体是最近十几年才被确认的组织。在低、中碳合金钢中,特别是连续冷却时(如正火、热轧空冷或焊接热影响区)往往容易出现,在等温冷却时也可能形成。它的形成温度范围大致在上贝氏体转变温度区的上部,由铁素体和它所包围的小岛状组织所组成。 (4)马氏体(M):是碳在a-Fe中的过饱和固溶体。马氏体的形态按含碳量主要分两种,即板条状和针状(如图6、图7所示) 图5 ??下贝氏体 ????图6 ??回火板条马氏体 A、板条状马氏体一般为低碳钢或低碳合金钢的淬火组织。其组织形态是由尺寸大致相同的细马氏体条定向平行排列组成马氏体束或马氏体领域。在马氏体束之间位向差较大,一个奥氏体晶粒内可形成几个不同的马氏体领域。板条马氏体具有较低的硬度和较好的韧性。 B、针状马氏体是碳量较高的钢淬火后得到的组织。在光学显微镜下,它呈竹叶状或针状,针与针之间成一定的角度。最先形成的马氏体较粗大,往往横穿整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体的大小受到限制。因此,针状马氏体的大小不一。同时有些马氏体有一条中脊线,并在马氏体周围有残留奥氏体。针状马氏体的硬度高而韧性差。

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

碳钢热处理后的显微组织观察与分析

综合性、设计性实验项目认定审批表 院(系)材料工程学院申请日期 实验名称碳钢热处理后的显微组织观察与分析实验时数8 学时 课程名称金属学及热处理(实践)课程代码 B 实验性质综合性□设计性□实验类别基础□专业基础□专业□每组人数 2 实验要求必做□选做□适用专业材料科学与工程专业金属压力加工方向 申请依据:[该实验项目总体情况介绍、实验目的、要求、应用知识面、实验手段和方法、研究领域等以及确定为综合性、设计性实验的主要依据] 《碳钢热处理后的显微组织观察与分析》实验是学生在完成《钢的热处理工艺操作》实验之后进行的。主要内容是分析不同成分的碳钢经过退火、正火、淬火、回火处理后的显微组织,测定热处理样品的硬度。 实验目的:掌握分析钢热处理后的组织形态特征的方法、掌握测定钢热处理后的硬度方法。掌握钢成分、冷却速度、回火温度对钢组织、硬度的影响规律。 实验应用知识面:实验项目应用到了“材料科学基础”、“金属材料及热处理”、“材料性能”等课程的知识以及金相试样制备、金相分析、硬度测定基本技能。 实验手段和方法:要求学生独立完成热处理样品的金相制样工作,独立完成热处理样品的组织分析、性能检测工作。大组汇总小组的实验数据,讨论、总结冷却速度、回火温度对钢组织、硬度的影响规律。全班汇总各大组的实验数据,讨论、总结钢成分、冷却速度、回火温度对钢组织、硬度的影响规律,实验体会。 《碳钢热处理后的显微组织观察与分析》实验项目研究的是钢-热处理-性能的关系。钢是工业中应用广泛的金属材料,金属热处理通过改变工件内部的显微组织赋予、改善性能。 综合《碳钢热处理后的显微组织观察与分析》的内容、目的、应用知识面、实验方法、研究领域等,申请此实验项目为综合性实验。 专家认定意见与结论: 专家组组长(签名):年月日姓名单位职称签名 专家 组 成员 名单 院(系)部意见: 领导签字:年月日

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析 实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的 (1)观察和研究碳钢经不同形式热处理后显微组织的特点。 (2)了解热处理工艺对碳钢硬度的影响。 二:实验说明 碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。 图1 共析碳钢的c曲线 图2 45钢的CCT曲线 C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。 1.碳钢的退火和正火组织 亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则

采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。 2.钢的淬火组织 含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。 图3 T12 钢球化退火组织图4 低碳马氏体组织 45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。

实验五(碳钢、合金钢、铸铁、有色典型组织观察)

实验五碳钢、合金钢、铸铁、有色金属典型组织观察 一、实验目的 1、观察和研究各种不同类型合金材料的显微组织特征; 2、了解这些合金材料的成分、显微组织对性能的影响。 二、概述 (一)碳钢的显微组织 铁碳合金缓冷后的金相显微组织基本上与铁碳相图所预料的各种平衡组织相符合,但碳钢在不平蘅状态,即在快冷条件下的显微组织就不能用铁碳合金相图来分析,而应由过冷奥氏体转变曲线图—C曲线来确定。图1为共析碳钢的等温转变C曲线图。 图1 共析碳钢的C曲线图 按照不同的冷却条件,过冷奥氏体在不同的温度范围发生不同类型的转变。通过金相显微镜观察,可以看出过冷奥氏体各种转变产物的组织形态各不相同。共析碳钢过冷奥氏体在不同温度转变的组织特征及性能如表1所示。 表1 共析碳钢过冷奥氏体在不同温度转变的组织特征及性能 转变 类型 组织名称 形成温度 范围(℃) 金相纤维组织特征硬度(HRC)珠光 体型 相变 珠光体(P)>650 在400~500倍金相显微镜下可观察到铁 素体和渗碳体的片层状组织 ~20 (HB180~200 )

索氏体(S)600~650 在800-1000倍以上的显微镜卜才能分清 片层状特征,在低倍镜下片层模糊不清 25~35 屈氏体(T)550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显微镜(5000-15000x) 下才 能看出片层组织 35~40 贝氏体型相变上贝氏体 (B上) 350~550 金相显微镜下呈暗灰色的羽毛状特征40~48 下贝氏体 (B下) 230~350 在金相显微镜下呈黑色针叶状特征48~58 马氏 体型相变马氏体(M)<230 在正常淬火温度下呈细针状马氏体(隐晶 马氏体),过热淬火时呈粗大片状马氏体 62~65 1、钢的退火和正火组织 亚共析成分的碳钢(如40、45钢等)一般采用完全退火,退火后可得到近似平衡状态的组织。过共析成分的碳素工具钢(如T10、T12钢等)则都采用球化退火,球化退火后获得粒状珠光体组织。T12钢经球化退火后组织中的二次渗碳体及珠光体中的渗碳体都将变成颗粒状。如图2所示。图中均匀而分散的细小粒状组织就是粒状渗碳体。 图2 T12钢球化退火后的显微组织(500×)图3 45钢正火后的显微组织(500×)因为正火的冷却速度大于退火的冷却速度,所以45钢正火后的组织比退火的细,珠光体的相对含量也比退火组织中的多(如图3所示)。 2、钢的淬火组织 根据Fe—Fe3C相图可知,将45钢加热到760℃奥氏体化,然后在水中冷却,

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组 织观察与分析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

碳钢热处理后的显微组织观察与分析 实验目的实验说明实验内容实验方法指导实验报告要求思考题 一:实验目的(1)观察和研究碳钢经不同形式热处理后显微组织的特点。(2)了解热处理工艺对碳钢硬度的影响。 二:实验说明碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。 图1 共析碳钢的c曲线 图2 45钢的CCT曲线 曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。1.碳钢的退火和正火组织亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。2.钢的淬火组织含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。

图3 T12 钢球化退火组织图4 低碳马氏体组织 5钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 5钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。 图5 45钢正常淬火组织图6 45钢油淬组织图7 上贝氏体组织特征下贝氏体是在片状铁素体内部沉淀有碳化物的组织。由于易受浸蚀,所以在显微镜下呈黑色针状特征,如图8所示。在观察上、下贝氏体组织时,应注意为显示贝氏体组织形态,试样的处理条件一般是在等温度下保持不长的时间后即在水中冷却,因此只形成部分贝氏体,显微组织中呈白亮色的基体部分为淬火马氏体组织。含碳质量分数相当于过共析成分的奥氏体淬火后除得到针状马氏体外,还有较多的残余奥氏体。T12碳钢在正常温度淬火后将得到细小针状马氏体加部分未溶人奥氏体中的球形渗碳体和少量残余奥氏体,如图4.9所示。但是当把此钢加热到较高温度淬火时,显微镜组织中出现粗大针状马氏体,并在马氏体针之间看到亮白

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

压力容器用钢常见金相组织以及钢的分类

压力容器用钢常见金相组织以及钢的分类 锅炉压力容器用钢常见金相组织和性能 1.奥氏体A[Feγ(C)] 奥氏体是碳在γ-Fe中的固熔体,在合金钢中是碳和合金元素熔解在γ-Fe中的固溶体。奥氏体塑性很高,硬度和屈服点较低,布氏硬度值一般为170~220HB,是钢中比容最小的组织。奥氏体在1147℃时可溶解碳为2.11%,在727℃时可溶解碳为0.77%。 奥氏体仍然保持γ-Fe的面心立方晶格,在金相组织中呈现为规则的多边形。 2.铁素体F [Feα(C)] 铁素体是碳与合金元素溶解在α-Fe中的固溶体。 铁素体性能接近钝铁,硬度低(约为80~100HB),塑性好。固溶有合金元素的铁素体能提高钢的强度和硬度。在727℃时,碳在铁素体中溶解为0.022%,在常温下含碳量为0.008%。铁素体仍然保持α-Fe的体心立方晶格,在金相组织中具有典型纯金属的多面体金相特征。 3.渗碳体 [Fe3C] 渗碳体是铁和碳的化合物,又称碳化铁,常温下铁碳合金中碳大部分以渗碳体存在。根据铁—碳平衡图,渗碳体可分为: 一次渗碳体,是沿CD线由液体中结晶析出,多呈柱状。 二次渗碳体是从γ-固溶体中沿ES线析出的,多以白色网状出现。 三次渗碳体是从α-固溶体中沿PQ线析出的,多以白色网状出现。 渗碳体在低温下有弱磁性,高于217℃磁性消失。渗碳体的熔化温度约为1600℃,含碳量为6.67%,硬度很高(约为>700HB),脆性很大,塑性近乎于零。 4.珠光体P 珠光体是铁素体和渗碳体的混合物,是含碳量为0.77%的碳钢共析转变的产物,由铁素体和渗碳体相间排列的片层状组织。 珠光体的片间距取决于奥氏体分解时的过冷度,过冷度越大形成的珠光体片间距越小。按片间距的大小,又可分为珠光体、索氏体和屈氏体。由于它们没有本质上的区别,统称为珠光体。 粗片状珠光体,是奥氏体在650~700℃高温分解的产物,硬度约为190~230HB,用一般金相显微镜(500倍以下)能分辩Fe3C片。 索氏体S,是奥氏体在600~650℃高温分解的产物,硬度约为240~320HB,用高倍显微镜放大1000倍才能分辩Fe3C片。 屈氏体T,是奥氏体在550~600℃高温分解的产物,硬度约为330~400HB,用电子显微镜放大10000倍能分辩Fe3C片。 珠光体在金相组织中,多为铁素体和渗碳体相间排列的层片状组织,片层一般稍弯曲。在一定热处理条件下(球化退火或高温回火),渗碳体以颗粒状分布于铁素体基底之上,即球化组织,亦叫粒状珠光。 5.马氏体M 马氏体是碳在α-Fe中的过饱和固溶体。当钢高温奥氏体化之后,若快速冷却至马氏体点以

铜及铜合金的金相组织分析.

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

碳钢热处理后的组织

碳钢热处理后的组织 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C 曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT 曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。 2、共析钢连续冷却时的显微组织

为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征

金相组织分析 可下载 可修改 优质文档

实验三碳钢的非平衡组织及常用金属材料 显微组织观察 实验目的概述实验内容实验方法实验报告思 考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。在缓慢冷时(相当于炉冷,见图2-3中的V1)应得到100%的珠光体;当冷却速度增大到V2。时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至V4、V5,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V4)称为淬火的临界冷却速度。 转变类型组织名称形成温度范围/℃显微组织特征硬度(HRC) 珠光体型相 变珠光体 (P) >650 在400~500X金相显微镜下可以观察到 铁索体和渗碳体的片层状组织 ~20 (HBl80~200)索氏体 (S) 600~650 在800一]000X以上的显微镜下才能分 清片层状特征,在低倍下片层模糊不清 25~35 屈氏体 (T) 550~600 用光学显微镜观察时呈黑色团状组织, 只有在电子显徽镜(5000~15000X)下 才能看出片层状 35—40 贝氏体型相 变上贝氏体 (B上) 350~550 在金相显微镜下呈暗灰色的羽毛状特 征 40—48 下贝氏体 (BT) 230~350在金相显微镜下呈黑色针叶状特征48~58

碳钢的热处理实验报告-(恢复)

碳钢的热处理实验报告-(恢复)

金属热处理实验报告 张金垚 41030165 材控102班

热处理实验报告(T8钢300℃回火) 一、实验目的 1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。 2、研究含碳量、加热温度、冷却速度、回火温度对钢热处理后性能的影响。 3、掌握洛氏硬度机的使用方法。观察热处理后钢的组织特征。 二、实验原理 1、钢的淬火 所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。

(1)淬火温度的选择 选定正确的加热温度是保 证淬火质量的重要环节。淬火 时的具体加热温度主要取决于 钢的含碳量,可根据相 图确定(如图4所示)。对亚 共析钢,其加热温度为+ 30~50℃,若加热温度不足(低 于),则淬火组织中将出现铁 素体而造成强度及硬度的降 低。对过共析钢,加热温度为 +30~50℃,淬火后可得到细 小的马氏体与粒状渗碳体。后 者的存在可提高钢的硬度和耐 磨性。 (2)保温时间的确定 淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。

表1 碳钢在箱式电炉中加热时间的确定 加 热 温度(℃) 工件形状 圆柱形方形板形 保温时间 分钟/每毫 米直径 分钟/每毫 米厚度 分钟/每毫 米厚度 700 1.5 2.2 3 800 1.0 1.5 2 900 0.8 1.2 1.6 1000 0.4 0.6 0.8 (3)冷却速度的影响 冷却是淬火的关键工序, 它直接影响到钢淬火后的组 织和性能。冷却时应使冷却速 度大于临界冷却速度,以保证 获得马氏体组织;在这个前提 下又应尽量缓慢冷却,以减少 钢中的内应力,防止变形和开 裂。为此,可根据C曲线图(如

金属热处理缺陷分析报告及案例

<<金属热处理缺陷分析及案例>>试题 一、填空题 1、热处理缺陷产生的原因是多方面的,概括起来可分为热处理前、热处理中、热处理后三个方面的原因。 2、热处理缺陷分析方法有:断口分析、化学分析、金相检验、力学性能试验、验证试验、综合分析。 3、断裂可分为两种类型:脆性断裂和韧性断裂。 4、金属断裂的理论研究表明:任何应力状态都可以用切应力和正应力表示,这两种应力对变形和断裂起着不同的作用,只有切应力才可以引起金属发生塑性变形,而正应力只影响断裂的发展过程。 5、热处理变形常用的校正方法可分为机械校正法和热处理校正法。 6、热应力是指由表层与心部的温度差引起的胀缩不均匀而产生的内应力。 7、工程上常用的表面淬火方法主要有高频感应加热淬火和火焰淬火两种。 8、热处理中质量控制的关键是控制加热质量和冷却质量。 9、过热组织晶粒粗大的主要特征是奥氏体晶粒度在3级以下。 10、真空热处理常见缺陷有表面合金元素贫化、表面不光亮和氧化色、表面增碳或增氮、粘连、淬火硬度不足、表面晶粒长大。 11、低温回火温度范围是(150-250)℃,中温回火温度范围是(350-500)℃,高温回火温度范围是(500-6 50)℃。

12、工件的形状愈不对称,或冷却的不均匀性愈大,淬火后的变形也愈明显。 13、马氏体片越长,撞击能量越高,显微裂纹密度会越大,撞击应力会越大,显微裂纹的数目和长度也会增加。 14、合金元素通过对淬透性的影响,从而影响到淬裂倾向,一般来说,淬透性增加,淬裂性会增加。合金元素对M S的影响较大,一般来说,M S越低的钢,淬裂倾向越大。 15、一般来说,形状简单的工件,可采用上限加热温度,形状复杂、易淬裂的工件,则应采用下限加热温度。 16、对于低碳钢制工件,若正常加热温度淬火后内孔收缩,为了减小收缩,要降低淬火加热温度;对于中碳合金钢制的工件,若正常加热温度淬火后内孔胀大,为了减小孔腔的胀大,需降低淬火加热温度。 17、工件的热处理变形分为尺寸变化和形状畸变两种形式。 二、单项选择题 1、淬火裂纹通常分为 A 四种。 A、纵向裂纹、横向裂纹、网状裂纹、剥离裂纹 B、纵向裂纹、横向裂纹、剥离裂纹、显微裂纹 C、纵向裂纹、横向裂纹、网状裂纹、表面裂纹 D、纵向裂纹、横向裂纹、剥离裂纹、应力集中裂纹 2、第一类回火脆性通常发生在淬火马氏体于 B 回火温度区间,这类回火脆性在碳钢和合金钢中均会出现,它与回火后的冷却速

相关主题
文本预览
相关文档 最新文档