应用随机过程讲义一解析
- 格式:pptx
- 大小:1.34 MB
- 文档页数:60
4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那?对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是k t t -所以乘客总的等待时间为∑=-=)(0)()(t N k k t t t S使用条件期望来处理平均等待))(|)(())((n t N t E E t S E ==对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。
但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下,n t t t ,...,,21形成了独立均匀分布的顺序统计量。
不过就他们的和nt t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以2))((2)2)(())((22)())(|)((20t t N E t t t N E t E E nt nt nt t E nt n t N t E E nk k λ====-=-==∑=从而有4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。
定义风险率)(t λ如下)(1)()(t F t f t -=λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。
定义随机过程)(t N 如下}),,..,m ax (:{#)(01t X X X X n t N n n n ≤>=-这里A #表示集合A 中的元素个数。
如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。
事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。
很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。
假定t ∆充分小,在0,...,X X n 中只有n X 在],(t t t ∆+上,因此111-11-11111))())(()((),...,(]),((),...,],,(()),...,max(],,(()),...,max(],,(()1)()((--∞=-∆+∆=≤≤∆+∈=≤≤∆+∈=>∆+∈>∆+∈==-∆+∑n n n n n n n n n n n n t F t o t t f t X t X P t t X P t X t X t t X P X X X t t X P X X X t t X P t N t t N P所以)()()(1)()())(())()(()1)()((21t o t t t F t o t t f x F t o t t f t N t t N P n n ∆+∆=-∆+∆=∆+∆==-∆+∑∞=-λ另一方面,可以证明)()2)()((t o t N t t N P ∆=≥-∆+ 所以)(t N 是非齐次的Poisson 过程,强度)(t λ。
随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=〔其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑〕令 0()(1)n n S x n x ∞==+∑那么 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 那么211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰〕2、〔1〕 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有一样的参数的b 的Γ分布,关于参数p 具有可加性。
解 〔1〕设X 服从(,)p b Γ分布,那么10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ 〔2〕'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 假设(,)i i X p b Γ 1,2i = 那么121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
应用数学中的随机过程随机过程是应用数学领域中的一项重要研究内容,因其可以在多种领域中被广泛应用而备受瞩目。
简而言之,随机过程就是一个模型,它描述了具有随机性质的系统的时间演化。
随机过程的基本概念在介绍随机过程的具体应用之前,我们需要先了解一些随机过程的基本概念。
1. 状态空间:表示随机过程的所有状态可能性。
2. 状态转移概率:表示从一个状态转移到另一个状态的概率。
3. 随机过程的时间:通常用离散时间或连续时间来表示。
4. 马尔可夫过程:是一种常见的随机过程,它具有“无记忆性”的特点,即当前状态只与前一状态有关。
5. 马尔可夫链:是一种特殊的马尔可夫过程,它是一组具有马尔可夫性的随机变量序列。
随机过程在金融市场中的应用随机过程可以被广泛应用于金融市场中的风险管理。
在金融市场中,随机过程可以帮助投资者预测未来价格变动趋势,从而进行投资决策。
其中,布朗运动是一种重要的随机过程,在金融市场中得到了广泛应用。
布朗运动是一种连续时间随机过程,可以用来刻画股票价格变化等金融市场价格变动。
在布朗运动中,股票价格被看作一个随机游走,价格变化的大小和方向都是随机的。
因此,布朗运动可以被用来表示股票价格变动的噪声成分。
随机过程在信号处理中的应用随机过程也可以被用于信号处理领域。
特别的,自回归随机过程(AR)是一种常见的信号处理技术,可以用于声音信号、图像信号等多种信号的处理与分析。
AR过程可以通过建立随机模型来分析信号的各种统计特征,如均值、方差、自相关系数和谱密度等。
AR过程的基本思想是用之前的观测值来预测未来的观测值。
AR过程通常被用于对时间序列进行建模分析,并且被广泛应用于信号的降噪、预测等领域。
随机过程在生物统计中的应用自回归随机过程同样可以被用于生物统计。
在基因工程等领域中,自回归过程可以被用于建立基因表达数据的模型。
当分析基因表达时,一个基因的表达水平在不同的个体中可能有很大的变化。
自回归过程可以通过将分析数据看做一个时间序列来建模,并通过AR模型预测基因表达的未来趋势。