1.1函数解析式的几种基本方法及例题
- 格式:doc
- 大小:161.00 KB
- 文档页数:3
求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。
本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。
1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。
通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。
例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。
2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。
通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。
例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。
3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。
例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。
根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。
4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。
通过观察差分序列之间的规律,可以尝试找到函数的解析式。
例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。
5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。
通过寻找函数性质和限制条件的推理,可以得到函数解析式。
例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。
因此,猜测函数解析式为f(x) = ax^2。
通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。
函数解析式的常用求解方法:(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。
待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。
(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
求函数解析式是中学数学的重要内容,是高考的重要考点之一。
本文给出求函数解析式的基本方法,供广大师生参考。
一、定义法根据函数的定义求其解析式的方法。
例1. 已知,求。
解:因为二、换元法已知看成一个整体t,进行换元,从而求出的方法。
例2. 同例1。
解:令,所以,所以。
评注:利用换元法求函数解析式必须考虑“元”的取值范围,即的定义域。
三、方程组法根据题意,通过建立方程组求函数解析式的方法。
例3. 已知定义在R上的函数满足,求的解析式。
解:,①②得,所以。
评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。
四、特殊化法通过对某变量取特殊值求函数解析式的方法。
例4. 已知函数的定义域为R,并对一切实数x,y都有,求的解析式。
函 数 解 析 式 的 六 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式.三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
例3 已知x x x f 2)1(+=+,求)1(+x f .四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x xf x f x f =-满足求)(x f .例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式小结:消元法适用于自变量的对称规律。
互为倒数,如f(x)、1()f x ;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。
求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。
(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
函数专题之解析式问题求函数解析式的方法f(x)的解析式。
,∴f(x)=2x+7待定系数法()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。
x y ()f x 例题:解法一、1222x x a∆-==2248b ac a ∴-=21()212f x x x ∴=++1c =又1,2,12a b c ===解得2()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40a b -=得解法二、(0)1f =41a k ∴+=1222x x -=222k a-∴=1,12a k ∴==-221()(2)121212f x x x x ∴=+-=++()y f x =2x =-得的对称轴为(2)(2)f x f x -=--由∴2()(2)f x a x k=++设二 【换元法】(注意新元的取值范围)已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。
三【配凑法(整体代换法)】若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。
换元法()f x 211(1)(1)1f x x+=-2211(2)()f x x x x+=+例题:根据条件,分别求出函数的解析式22()(1)12f t t t t∴=--=-11tx+=(1)解:令11t x=-1t ≠则且2()2f x x x=-(1)x ≠即换元法2()2f x x ∴=-(2)x ≥凑配法x1x x+用替代式中的12x x+≥又考虑到211()()2f x x x x+=+-(2)解:【例题】已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键 解1:f(x-1)==2)1(-x -2(x-1)-3,∴f(x)=2x -2x-3 f(x+1)=2)1(+x -2(x+1)-3=2x -4,∴2x -4=0,x=±2解2:f(x-1)=2x -4x ,∴f(x+1)=f[(x+2)-1]=2)2(+x -4(x+2)=2x -4,∴2x -4=0,x=±2 解3:令x-1=t+1,则x=t+2,∴f(t+1)=2)2(+t -4(t+2)=2t -4 ∴f(x+1)=2x -4,∴2x -4=0,∴x=±2评注:只要抓住关键,采用不同方法都可以达到目的。
求函数解析式的方法和例题一、常见的函数解析式的求法。
1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。
2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。
3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。
通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。
4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。
通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。
5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。
二、函数解析式的例题。
1. 求一次函数y=2x+3的解析式。
解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。
2. 求二次函数y=x^2+3x-2的解析式。
解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。
3. 求指数函数y=2^x的解析式。
解,观察法可得y=2^x的解析式为y=2^x。
4. 求对数函数y=log2(x)的解析式。
解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。
5. 求正弦函数y=sin(x)的解析式。
解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。
以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。
在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。
求函数解析式的基本方法函数解析式是指用代数式表示一个函数的方法。
基本上,我们可以通过以下几种方法来求解一个函数的解析式:1. 直接根据函数的定义求解:有些函数的定义可以直接给出解析式,比如常见的线性函数、二次函数、三角函数等。
例如,一次函数的解析式一般为 y=ax+b,其中 a 和 b 为常数。
2.根据已知函数的性质和关系求解:有时候我们已经知道了一些函数的性质和关系,可以通过利用这些已知信息来求解未知函数的解析式。
例如,如果已知函数f(x)和g(x)满足f(x)+g(x)=x^2,我们可以通过分析并联两个函数的和的性质来求解f(x)和g(x)的解析式。
3.根据函数的图象求解:函数的图象可以提供一些有用的信息,可以通过观察函数的图象来求解函数的解析式。
例如,可以通过观察二次函数的图象的顶点、开口方向等特征来求解函数的解析式。
4.利用已知的函数的运算性质和函数间的关系推导出未知函数的解析式:在代数学中有许多函数间的运算性质和关系,可以利用这些性质和关系来求解未知函数的解析式。
例如,如果已知函数f(x)的导数是f'(x),我们可以通过求解f(x)的导函数来求解f(x)的解析式。
需要注意的是,求解函数的解析式是一个复杂而多变的过程,除了上述基本方法外,还可能需要运用代数、微积分、函数极限等数学知识来辅助求解。
另外,对于一些复杂的函数,可能不存在显式的解析式,只能通过数值逼近的方法得到函数的近似解析式。
举例说明求解函数解析式的方法:1. 求解线性函数:如果已知函数 f(x) 是一个线性函数,并且已知通过点 P(1,2),Q(3,6),则可以通过求解函数的斜率来得到函数的解析式。
设 f(x)=ax+b,则根据点斜式公式可得到斜率 a = (6-2)/(3-1) = 2、代入点 P(1,2) 可得到 2 = a*1+b,代入点 Q(3,6) 可得到 6 = a*3+b,解此方程组可得到 a = 2,b = 0,因此函数的解析式为 f(x) = 2x。
求函数解析式的方法和例题在数学中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数的解析式呢?接下来,我们将介绍一些常见的方法和例题,希望能帮助你更好地理解和掌握这一内容。
一、根据函数图像求解析式。
对于一些简单的函数,我们可以通过观察其图像来推导出函数的解析式。
例如,对于一次函数y=kx+b,我们可以根据函数图像上的两个点来确定k和b的值,进而得到函数的解析式。
同样地,对于二次函数、指数函数等,也可以通过观察函数图像来求解析式。
例题1,已知一次函数的图像经过点(1,3)和(2,5),求函数的解析式。
解:设函数为y=kx+b,代入已知的两个点得到方程组:3=k1+b。
5=k2+b。
解方程组得到k=2,b=1,因此函数的解析式为y=2x+1。
二、根据函数性质求解析式。
有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于指数函数y=a^x,我们知道指数函数经过点(0,1),因此可以利用这一性质求解析式。
又如,对于对数函数y=loga(x),我们知道对数函数的定义域为正实数,可以利用这一性质来确定函数的解析式。
例题2,已知指数函数经过点(1,2),求函数的解析式。
解,设函数为y=a^x,代入已知的点(1,2)得到方程a^1=2,解得a=2,因此函数的解析式为y=2^x。
三、根据函数的变化规律求解析式。
有些函数的变化规律是已知的,我们可以根据这一规律来求解析式。
例如,对于等差数列an=a1+(n-1)d,我们知道等差数列的通项公式是已知的,可以直接利用这一公式求解析式。
同样地,对于等比数列、等差数列等,也可以根据其变化规律来求解析式。
例题3,已知等差数列的首项为3,公差为4,求第n项的表达式。
解,根据等差数列的通项公式an=a1+(n-1)d,代入已知的首项和公差得到an=3+(n-1)4,化简得到an=4n-1,因此第n项的表达式为4n-1。
求函数解析式的方法和例题一、常见的求函数解析式的方法。
1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。
例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。
2. 图像法,通过观察函数的图像特征,推导出函数的解析式。
例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。
3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。
例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。
4. 反函数法,有些函数的解析式可以通过求解其反函数得到。
例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。
二、求函数解析式的例题。
1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。
解:根据已知条件,我们可以列出方程组:a1+b=3。
a2+b=5。
通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。
2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。
解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。
a(-1)^2+b(-1)+c=3。
通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。
3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。
解:根据已知条件,我们可以列出方程组:a^2=16。
a^3=64。
通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。
以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。
通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。
求函数的解析式一、解析式的表达形式——解析式的表达形式有一般式、分段式、复合式等。
1、一般式是大部分函数的表达形式,例一次函数:b kx y )0(k;二次函数:c bx axy2)0(a 反比例函数:x k y)0(k;正比例函数:kxy )0(k2、分段式:函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。
例1、设函数,1,log 1,,2)(81xx x x f x,则满足41)(x f 的x 的值为。
3、复合式:若y 是u 的函数,u 又是x 的函数,即),(),(),(b a xx g u u f y ,那么y 关于x 的函数b a x x g f y,,)(叫做f 和g 的复合函数。
例2、已知3)(,12)(2xx g xx f ,则)(x g f ,)(x f g 。
二、解析式的求法—根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。
1待定系数法——若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。
例3、已知二次函数)(x f y满足),2()2(xf xf 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y的解析式。
分析:二次函数的解析式有三种形式:①一般式:)0()(2a c bx axx f ②顶点式:为函数的顶点点其中k h a kh x a x f ,,0)()(2③双根式:的两根是方程与其中0)(,0))(()(2121x f x x ax x x xa x f2、换元法——例4、已知:11)11(2xxf ,求)(x f 。
注意:使用换元法要注意t 的范围限制,这是一个极易忽略的地方。
3、配凑法——例5、已知:221)1(xxx xf ,求)(x f 。
注意:1、使用配凑法也要注意自变量的范围限制; 2、换元法和配凑法在解题时可以通用,若一题能用换元法求解析式,则也能用配凑法求解析式。
求函数解析式的几种基本方法及例题:
1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
此法较适合简单题目。
例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).
(2) 已知221)1
(x
x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3.
(2) 2)1()1(2-+=+x x x x f , 21≥+x
x
2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x
x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x
(2)设.)(,,,1111111
11-=∴-=-===x x f t t
t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。
应用此法解题时往往需要解恒等式。
例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x).
解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c
+a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,
则应有.)(1212102242222--=∴⎪⎩
⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a
四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例4 设,)1(2)()(x x f x f x f =-满足求)(x f
解 x x f x f =-)1(2)( ①
显然,0≠x 将x 换成x
1,得: x
x f x f 1)(2)1(=- ② 解① ②联立的方程组,得:
五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例5 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,
不妨令0x =,则有1)1(1)1()0()(2
+-=-+=+--=-y y y y y y f y f
再令 x y =- 得函数解析式为:1)(2++=x x x f 例6、(分段函数)设f(x)=1,2x g(x) x x +=⎪⎩⎪⎨⎧>+≤--1111212,,x
x 求f[g(x)]的表达式. 解:(对于分段函数的问题,应遵循“分段处理”的原则)
当|2x+1|≤1即-1≤x ≤0时,f[g(x)]=2|x|-2,
当|2x+1|>1即x >0或x <-1时,f[g(x)]=2
4412++x x 。
∴f[g(x)]=⎪⎩⎪⎨⎧<>++≤≤-1x 0x 0x 1- -2,|x |2或2
4412x x
(三)、课堂练习:
1、已知f(x+1)=x 2-2x,求f(x)及f(x-2).
(答案:f(x)=x 2-4x+3,f(x-2)=x 2-8x+15)
2、已知f (x +1)=x+2x +1,求f(x)的解析式。
(答案:f(x)=x 2(x ≥1) )
3、已知f(x)为多项式,f(x+1)+f(x-1)=2x 2-2x+4.求f(x)的解析式。
(答案:f(x)=x 2-x+1)
4、已知f(x)=2x+a,ϕ(x)=4
1(x 2+3),且ϕ[f(x)]=x 2+x+1,则a= . 5、如果函数f(x)满足方程,0,)1()(≠∈=+x R x ax x
f x af 且a 为常数,且a ≠±1,求f(x)的解析式。
解:∵af(x)+f(x 1)=ax ① 将x 换成x 1,x 1换成x 得, af(x 1)+f(x)=x a ② 由①、②得f(x)=).()()(01112222≠∈--=--
x R x x a ax a a x a
ax 且 (答案:0≤x ≤10或x ≤-2 )
7、已知函数f(x)对任意正数m,n 均有f(mn)=f(m)+f(n)成立,且f(8)=3,试求f(2)的
值。
(答案:f(2)=2
1)。