八年级数学下册2_3不等式的解集学案无答案新版北师大版
- 格式:doc
- 大小:180.50 KB
- 文档页数:4
北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容。
这一节主要介绍了不等式的解集的概念,包括一元一次不等式和一元二次不等式的解集。
学生将学习如何求解不等式,如何表示不等式的解集,以及如何理解不等式解集的性质。
这一节的内容是整个初中数学不等式部分的基础,对于学生掌握数学知识体系至关重要。
二. 学情分析学生在学习本节内容之前,已经学习了不等式的基本概念和性质,包括一元一次不等式的解法。
他们已经掌握了基本的代数运算,能够进行简单的方程求解。
但是,对于一元二次不等式的解法和不等式解集的表示,他们可能还比较陌生。
因此,在教学过程中,需要逐步引导学生理解新知识,通过实例让学生直观地感受不等式解集的概念。
三. 教学目标1.理解不等式解集的概念,掌握求解一元一次不等式和一元二次不等式解集的方法。
2.能够用集合的形式表示不等式的解集,并理解解集的性质。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:不等式解集的概念,求解不等式解集的方法。
2.教学难点:一元二次不等式解集的求解和不等式解集的性质。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题,理解和掌握不等式解集的概念和方法。
2.使用多媒体教学辅助工具,通过图示和动画,直观地展示不等式解集的特点,帮助学生形象地理解知识。
3.采用小组合作学习的方式,让学生在讨论和交流中,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT,包括不等式解集的图示和实例。
2.准备一些实际问题,用于引导学生理解和应用不等式解集的知识。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何表示不等式的解集。
例如,给出不等式2x-3>1,让学生思考如何表示这个不等式的解集。
2.呈现(10分钟)通过PPT展示不等式解集的图示和实例,让学生直观地感受不等式解集的概念。
八年级数学下册 2.3不等式的解集学案新版北师大版2、3不等式的解集学习目标:1、能根据具体情境理解不等式的解与解集的意义;2、能在数轴上表示不等式的解集。
重点和难点:理解不等式的解与解集的概念,探索不等式的解集并能在数轴上表示出来。
学习过程:一、情景导入:一辆货车向灾区运送物资,共有80千米路程,需要1小时送到,前半小时已经走了35千米,后半小时的平均速度至少多大才能准时到达?二、阅读教材43页“议一议”之前部分,完成下列内容:1、回答“想一想”中的问题:(1)。
(2)。
2、观察“情景导入”中得到的不等式,想一想:能使不等式成立吗?你还能找出一些使不等式成立的的值吗?归纳:能使不等式的未知数的值,叫做不等式的解。
例如:是不等式的。
3、一般地,不等式的解不止一个,甚至可以有个,例如:有个解,而这些解都满足条件,因此,表示了能使不等式成立的x的取值范围。
归纳:一个含有未知数的不等式的所有解,组成这个不等式的,求不等式的的过程叫做解不等式。
例如的解集为。
三、阅读教材43—44页“议一议”,完成下列内容:1、数轴可以看做它上面所有点组成的,每个点都表示一个,数轴上的点与一一对应。
2、思考:不等式的解集能否用数轴来表示?如何表示?请同学们用自己的方式将不等式的解集和不等式的解集分别表示在数轴上,并与同伴进行交流。
-3-2-101把表示-2的点画成,因为不等式的解集不包括2、把表示1的点画成,因为不等式的解集包括1归纳:如果不等式的符号是“”或“”,在数轴上用表示;如果不等式的符号是“”或“”,在数轴上用表示。
四、合作探究学习1、探究1:填空(1)方程的解有个,不等式的解有个(2)不等式的解集是(3)不等式的负整数解是(4)不等式的正整数解是2、探究2:根据不等式的基本性质求不等式的解集,并把解集表示在数轴上(1)(2)(3)(4)(5)五、当堂检测:1、在数轴上表示不等式的解集,正确的是()A B C D2、已知不等式的解集在数轴上表示如图所示,则不等式的解集是()A、B、C、D、3、若的解集为x>1,那么a的取值范围是()A、a>0B、a<0C、a<1D、a>14、不等式的解集为_______,它的解有个,其非负整数解为。
2021年北师大版数学八年级下册2.3《不等式的解集》教案一. 教材分析《不等式的解集》是北师大版数学八年级下册第二章第三节的内容。
在此之前,学生已经学习了不等式的概念和性质,为本节内容的学习奠定了基础。
本节内容主要介绍了不等式的解集及其表示方法,旨在让学生理解不等式的解集的意义,掌握求解不等式解集的方法,并能够用集合或数轴表示不等式的解集。
二. 学情分析八年级的学生已经具备一定的不等式知识基础,对于不等式的概念和性质已有初步了解。
但学生在求解不等式解集和表示解集方面还存在一定的困难,因此,在教学过程中,需要关注学生的认知差异,针对性地进行指导。
三. 教学目标1.理解不等式解集的概念,掌握求解不等式解集的方法。
2.能够用集合或数轴表示不等式的解集。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:不等式解集的概念、求解方法及表示方法。
2.难点:不等式解集的求解和表示。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等多种教学方法,引导学生主动探究、积极参与,提高学生分析问题、解决问题的能力。
六. 教学准备1.教学课件:制作涵盖不等式解集概念、求解方法、表示方法的课件。
2.教学素材:准备一些典型的不等式题目,用于引导学生求解和解集表示。
3.数轴工具:准备数轴工具,方便学生直观地表示不等式的解集。
七. 教学过程1.导入(5分钟)利用一个实际问题引入不等式解集的概念,如:“某班有男生和女生共50人,男生人数是女生的2倍,求该班男生和女生各有多少人?”引导学生思考并解答这个问题,从而引出不等式解集的概念。
2.呈现(10分钟)呈现不等式解集的定义,并通过示例让学生了解不等式解集的意义。
同时,介绍求解不等式解集的基本方法,如:因式分解法、图像法等。
3.操练(10分钟)让学生分组练习求解一些简单的不等式,如:ax > b(a、b为已知数),并引导学生用集合或数轴表示解集。
教师巡回指导,解答学生疑问。
北师大版八年级下册数学《2.3 不等式的解集》教学设计一. 教材分析北师大版八年级下册数学《2.3 不等式的解集》这一节主要介绍了不等式的解集的概念以及求解不等式的解集的方法。
教材通过具体的例子让学生理解不等式的解集是什么,并通过图示和数轴帮助学生更好地理解不等式的解集。
教材还介绍了不等式解集的表示方法,包括集合表示法和区间表示法。
此外,教材还提到了不等式解集的性质,如传递性、互补性等。
二. 学情分析学生在学习这一节之前,已经学习了不等式的基本概念和性质,对不等式有一定的了解。
但是,学生可能对不等式解集的概念和表示方法比较陌生,需要通过具体的例子和图示来帮助理解。
此外,学生可能对求解不等式解集的方法不太熟悉,需要通过练习和讲解来掌握。
三. 教学目标1.了解不等式解集的概念和表示方法。
2.学会求解不等式的解集的方法。
3.能够运用不等式解集的概念和求解方法解决实际问题。
四. 教学重难点1.不等式解集的概念和表示方法。
2.求解不等式解集的方法。
五. 教学方法采用讲解法、举例法、讨论法、练习法等多种教学方法,通过具体的例子和图示帮助学生理解不等式解集的概念和表示方法,通过讲解和练习让学生掌握求解不等式解集的方法。
六. 教学准备1.教材和教辅资料。
2.PPT或者黑板。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个具体的例子引出不等式解集的概念,让学生思考和讨论这个例子中的不等式解集是什么,如何表示。
2.呈现(10分钟)讲解不等式解集的概念和表示方法,通过图示和数轴帮助学生理解。
同时,给出不等式解集的性质,如传递性、互补性等。
3.操练(10分钟)让学生练习求解一些简单的不等式解集,给予讲解和指导。
4.巩固(10分钟)通过一些练习题让学生巩固不等式解集的概念和求解方法。
5.拓展(10分钟)让学生思考和讨论如何将不等式解集的概念和求解方法应用到实际问题中,给出一些例子进行讲解。
6.小结(5分钟)对本节课的主要内容进行小结,强调不等式解集的概念和表示方法,以及求解不等式解集的方法。
北师大版数学八年级下册《2.3 不等式的解集》教学设计
判断一个数值是否是不等式的一个解只需代入验证即可.由于不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有数值都在解集中,因此如果解集内有一个数能够使不等式不成立或解集外有一个数能够使不等式成立,那么这个解集就不是这个不等式的解集.
请你用自己的方式将不等式 x > 5 的解集和不等式x-5 ≤-1 的解集分别表示在数轴上,并与同伴交流.
不等式 x > 5 的解集可以用数轴上表示 5 的点的右边部分来表示,在数轴上表示 5 的点的位置上画空心圆圈,表示 5 不在这个解集内.
不等式 x-5≤ - 1 的解集 x ≤ 4 可以用数轴上表示 4 的点及其左边部分来表示,在数轴上表示 4 的点的位置上画实心圆点,表示 4 在这个解集内.。
课题:2.3不等式的解集课型:新授课年级:八年级教学目标:1. 理解不等式的解、不等式的解集、解不等式这些概念的含义,会在数轴上表示不等式的解集.2. 培养学生从现实生活中发现并提出简单的数学问题的能力,经历建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想.3. 从实际问题抽象出数学模型,让学生认识数学与人类生活的密切联系,通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,探索求不等式的解集的过程,体验数学活动充满着探索与创造.教学重点与难点:重点:理解不等式的解、利用数轴表示不等式的解集.难点:不等式解集的意义和不等式解集在数轴上的表示.课前准备:多媒体课件、实物投影.教学过程:一、知识回顾,垫平道路1.不等式的基本性质1:,不等式的基本性质2:,不等式的基本性质3: .2.将不等式化成“x>a”或“x<a”的形式:(1)x-5≤-1;(2)5x+3<3x-1.5.3.当x取下列数值时,不等式x+3<6是否成立?-4,3.5,4,-2.5,3,0,2,9;【引导语预设】上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.设计意图:通过对已有知识的回顾和思考,学生既感自然又倍添新奇,有跃跃欲试的心情;由易到难,引出课题,展示学习目标,培养学生养成回顾已学知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.三、自主交流,合作探究合作探究一:现实生活中的不等式燃放某种礼花弹时,为了确保安全,人在点燃引火线后要在燃放前转移到10 m 以外的安全区域,已知引火线的燃烧速度为以0.02 m /s ,人离开的速度为4 m /s ,那么引火线的长度应满足什么条件?处理方式:学生分别独立作答,分小组进行讨论,小组之间交流,教师巡视、指导学生,待学生完成后,让学生说出自己的答案,并解说解题过程.解:设导火线的长度为x cm ,人转移到安全区域需要的时间最少为410,导火线的燃烧时间为0.02100x⨯.依题意,得 10002.0⨯x >410 . 即252>x .由不等式的基本性质2得x >5.设计意图:首先通过图片展示正确的燃放烟花的方法,对学生进行一次安全教育.继而让学生在解决问题的过程中先找出几个符合题意的解,然后发现问题,这样既复习了不等式,又给新课做好了铺垫.合作探究二:想一想(1)x =4,5,6,7.2能使不等式x >5成立吗? (2)你还能找出一些使不等式x >5成立的x 的值吗?(3)你能否根据方程的解来类推出不等式的解的概念吗?不等式的解唯一吗? (4)判断一个数是不是不等式的解,方法是什么? (5)我们应该把不等式的所有解组合在一起称为什么? (6)什么是解不等式?处理方式:预设引导语:“字母可以表示任何数,但对于满足x >5中的字母x ,它能够取任意数吗?如果不能,它能取哪些数呢?”启发学生动脑思考、小组合作动手验证,并从中初步体会不等式解、不等式解集的意义及不等式的解与方程解的不同之处.不等式的解与不等式的解集的区别与联系:小试身手: 1.判断正误:(1)不等式x -1>0有无数个解; (2)x =2是不等式2x <6的一个解; (3)x =1不是不等式x -2>0的解;(4)因为x <3使不等式x -5<0成立,所以该不等式的解集为x <3.2.在0、-4、3、-3、-5、4、-10中,_____________是方程x +4=0的解,_____________是不等式x +4≥0的解,______________是不等式x +4<0的解.设计意图:以问题串的形式引导学生发现,不等式的解有许多个,他们组成一个集合,称为不等式的解集,这样既符合认知规律,又能找到最佳切入点,使学生产生探索的欲望,从而引出不等式的解集并加以巩固,学生易于接受和理解.合作探究三:议一议【师】既然不等式的解集在通常情形下有很多个符合条件的解,那么我们能否用一种直观的方法把不等式的解集表示出来呢?请同学们相互交流,发表自己的见解.(1)请你用自己的方式将不等式x >5的解集和不等式x -5≤-1的解集分别表示在数轴上,并与同伴交流.(2)小组讨论归纳如何把不等式的解集在数轴上表示出来呢?请举例说明. 处理方式:学生小组讨论,相互交流,发表自己的见解.教师适当点拨引导. 预设学生作答:【生1】不等式x >5的解集可以用数轴上表示5的点的右边部分来表示(图1),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图1【生2】不等式x -5≤-1的解集x ≤4可以用数轴上表示4的点及其左边部分来表示形特定不等式的联区不等式的解满足一个不等式未知数某值 满足一个不等式未知数所值 个全如 :x =是 2x -3<的 一个如 是 2x -3<的 解某个解定是解集中的一解集一定包括了某个x <5(图2),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图2【生3】将不等式的解集表示在数轴上时,要注意:(1)指示线的方向:“>”向右,“<”向左.(2)有“=”用实心圆点,没有“=”用空心圆圈.【方法提炼】引导学生总结出在数轴上表示不等式解集的要点:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.设计意图:通过引导学生回忆实数与数轴上的点的对应关系,知道不等式的解集也可以用数轴表示,同时,引导学生体验用数轴表示不等式的解集具有直观的优越性,以增强学生数形结合的意识.四、实际应用,升华新知1.例题解析根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x-2≥-4;(2)2x≤8 ;(3)-2x-2>-10.处理方式:学生分别独立作答,分小组进行讨论,小组之间交流,教师巡视、指导学生;待学生完成后,让学生投影自己的答案,并解说解题过程.出现与答案不符者,不能急于否定或肯定,要利用认知冲突,进一步发展学生的思维能力.解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2在数轴上表示为:如图3图3(2)根据不等式的基本性质2,两边都除以2,得x≤4在数轴上表示为:如图4图4(3)根据不等式的基本性质1,两边都加上2,得-2x>-8根据不等式的基本性质3,两边都除以-2,得x<4在数轴上表示为:如图5图5设计意图:通过例题的解析让学生理解不等式的解与不等式的解集,揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象、直观、易于说明问题的优点.2.学以致用将下列不等式的解集分别表示在数轴上:(1) x >4 ; (2) x <-1 ; (3) x ≥-2 ; (4) x ≤6 .处理方式:学生独立作答,教师巡视、指导学生;待学生完成后,让学生投影自己的答案,并解说解题过程.设计意图:进一步通过习题的练习,让学生积极参与交流探索,最后老师作进一步诱导,能及时发现学生在分析问题、解决问题中的不同见解,以及思维的误区,及时进行纠正、指导.把学生在课堂上学习的热情激发出来,使得人人参与交流,给每个学生展示自己的平台.五、归纳小结,升华认知【师】通过今天的课程,你学到了哪些知识?掌握了哪些方法?明白了哪些道理? ……处理方式:学生畅所欲言,相互进行补充,用自己的语言进行归纳总结.教师补充升华,多媒体呈现.设计意图:让学生梳理所学知识点,以形成完整知识结构,培养了归纳概括能力和语言表达能力.另外有针对性的对本节课的重点加以强调,加深学生对本节课知识的掌握.激发学生主动参与的意识,调动学生的学习兴趣,为每一位学生都提供了在数学学习活动中获得成功的体验和充分展示自己的机会.六、达标测试,反馈矫正 A 层:1.(2013•湘西)若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x +3>y +3D .33y x >.2.下列说法中,正确的有 ( )A .4是不等式x +3>6的解B .x +3<6的解是x <2C .3是不等式x +3≤6的解D .x >4是不等式x +3≥6的解的一部分 3. (2013•孝感)使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 4.写出下列各图所表示的不等式的解集:(1); (2)。
图1—5
2019-2020学年八年级数学下册 2.3 不等式的解集导学案(新版)
北师大版(5)
学习目标:①经历求不等式的解集的过程,并试着把不等式的解集在数轴上表示出来,发展学生的创新意识
专题一:对学讨论
(一)提出问题,引发讨论探索交流:
燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10米以外的安全区域,已知导火线的燃烧速度为0.02m/s ,人离开的速度为4 m/s ,那么导火线的长度应大于多少㎝?
(二)想一想:
(1)x=5、6、8能使不等式x>5成立吗?
(2)你还能找出一些使不等式x >5成立的x 的值吗?
(三)能使不等式成立的 ,叫做不等式的解。
一个含有未知数的 ,组成这个不等式的解集,求不等式的解集的过程叫做解不等式。
(四)议一议:
请同学们用自己的方式将不等式X >5的解集和不等式X-5≤-1的解集分别表示在数轴上,并与同伴进行交流
专题二:课堂训练.
1、在数轴上表示下列不等式的解集:
(1)x ≥3; (2)x ≤-1;
(3)x <0; (4)x >-1.
2.写出图1—5和图1—6所表示的不等式的解集:
(1)
图1—6
(2)
3.如图所示,在数轴上表示x >-2的解集,正确的是( )
4 ( )
x 0的解集,正确的是(A B C D
D. ≥6. 将不等式2< 1化成 < a 的形式, 并在数轴上表示出来.。
北师大版数学八年级下册2.3《不等式的解集》教案1一. 教材分析《不等式的解集》是北师大版数学八年级下册第二章第三节的内容。
本节课主要让学生了解不等式的解集及其表示方法,学会求解不等式的解集,并能运用不等式的解集解决实际问题。
本节课的内容是初中数学的重要知识,也是学习高中数学的基础。
二. 学情分析学生在学习本节课之前,已经掌握了不等式的基本概念和性质,具备了一定的数学思维能力。
但部分学生对不等式的解集的概念和表示方法可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.理解不等式的解集的概念,掌握不等式的解集的表示方法。
2.学会求解不等式的解集,并能运用不等式的解集解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.不等式的解集的概念和表示方法。
2.求解不等式的解集的方法。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,引导学生通过自主学习、合作交流,掌握不等式的解集的概念和表示方法,学会求解不等式的解集。
六. 教学准备1.课件和教学素材。
2.练习题和答案。
七. 教学过程1.导入(5分钟)通过复习不等式的基本概念和性质,引出不等式的解集的概念。
提问:不等式的解集是什么意思?如何表示?2.呈现(15分钟)通过实例讲解,让学生理解不等式的解集的概念和表示方法。
例如,解不等式2x-3>6,得到解集x>4,并用数轴表示。
让学生观察和思考,总结不等式的解集的表示方法。
3.操练(15分钟)让学生分组练习,求解一些不等式的解集,并用自己的方式表示出来。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生回答一些关于不等式的解集的问题,巩固所学知识。
例如,求解不等式组{3x-2y>6, 2x+y≤8}的解集,并用自己的方式表示出来。
5.拓展(10分钟)让学生运用不等式的解集解决实际问题。
例如,一个长方形的长比宽大3,面积大于20,求长方形的长大于等于多少。
不等式的解集1.理解并掌握不等式解和解集的概念;2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是( )A.不等式x<3有两个正整数解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个解析:A.不等式x<3有两个正整数解1,2,故A 正确;B.-2是不等式2x-1<0的一个解,故B 正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C. 方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.变式训练:见《学练优》本课时练习“课后巩固提升”第2题探究点二:用数轴表示不等式的解集【类型一】在数轴上表示不等式的解集不等式3x+5≥2的解集在数轴上表示正确的是( )A. B.C. D.解析:解3x+5≥2,得x≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是( )A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.变式训练:见《学练优》本课时练习“课后巩固提升”第3题三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.。
不等式的解集学习目标:1.可以依据详细问题中的大小关系认识不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些观点的含义.3.会在数轴上表示不等式的解集 .4.培育学生从现实生活中发现并提出简单的数学识题的能力.5.经历求不等式的解集的过程,发展学生的创新意识.学习要点:1.理解不等式中的相关观点 .2.探究不等式的解集并能在数轴上表示出来.学习难点:探究不等式的解集并能在数轴上表示出来.预习作业:请同学们预习作业教材P10-11的内容,在学习的过程中请弄清以下几个问题:1.什么叫不等式的解 ?能使 _________ _建立的未知数的值,叫做不等式的解2.什么叫不等式的解集?一个含有未知数的不等式的___________,构成这个不等式的解集3.什么叫解不等式?求 ________________ 的过程叫做解不等式4.如何将不等式的解集在数轴上表示出来?例 1:依据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.( 1)x- 2≥- 4;( 2) 2x≤ 8( 3)- 2x- 2>- 10说明:不等式的解集数轴上表示注意空心圆和实心圆的用法。
解集不包含这个数用空心圆,包含这个数用实心圆。
变式训练:1.判断正误:( 1)不等式x- 1> 0 有无数个解;(2)不等式2x- 3≤0 的解集为x≥2. 32.将以下不等式的解集分别表示在数轴上:(1)x>4;(2)x≤- 1;(3)x≥- 2;(4)x≤ 6.3.不等式的解集 x<3与 x≤3有什么不一样?在数轴上表示它们时如何差别?分别在数轴上把这两个解集表示出来 .4.不等式x≥ -3的负整数解是_________不等式x-1<2的正整数解是__________能力提升:1.给出四个命题:①若a>b,c=d,则ac>bd ;②若ac>bc,则a>b;③若a>b,则ac2>bc2;④若ac2>bc2, 则 a>b。
.2.3不等式的解集1.理解并掌握不等式解和解集的概念;2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是()A.不等式x<3有两个正整数解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个解析:A.不等式x<3有两个正整数解1,2,故A正确;B.-2是不等式2x-1<0的一个解,故B正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.探究点二:用数轴表示不等式的解集【类型一】在数轴上表示不等式的解集不等式3x+5≥2的解集在数轴上表示正确的是()A. B.C. D.解析:解3x+5≥2,得x≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.【类型二】根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不. 等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.。
八年级数学下册2.3 不等式的解集教案1(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册2.3不等式的解集教案1 (新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册2.3 不等式的解集教案1 (新版)北师大版的全部内容。
课题:2。
3不等式的解集教学目标:1. 理解不等式的解、不等式的解集、解不等式这些概念的含义,会在数轴上表示不等式的解集。
2.培养学生从现实生活中发现并提出简单的数学问题的能力,经历建立图形与数量的对应关系,能在数轴上表示不等式的解集,渗透数形结合的数学思想.3. 从实际问题抽象出数学模型,让学生认识数学与人类生活的密切联系,通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,探索求不等式的解集的过程,体验数学活动充满着探索与创造.教学重点与难点:重点:理解不等式的解、利用数轴表示不等式的解集。
难点:不等式解集的意义和不等式解集在数轴上的表示.课前准备:多媒体课件、实物投影.教学过程:一、知识回顾,垫平道路1.不等式的基本性质1: ,不等式的基本性质2: ,不等式的基本性质3: .2.将不等式化成“x>a"或“x〈a”的形式:(1)x-5≤-1; (2)5x+3〈3x—1。
5。
3.当x取下列数值时,不等式x+3<6是否成立?-4,3.5,4,-2.5,3,0,2,9;【引导语预设】上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试。
设计意图:通过对已有知识的回顾和思考,学生既感自然又倍添新奇,有跃跃欲试的心情;由易到难,引出课题,展示学习目标,培养学生养成回顾已学知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题。
《不等式的解集》教学目标1.知道不等式的解,不等式的解集,会判断一个数是不是某个不等式的解.2.会用数轴表示不等式的解集.3.会写出数轴表示的不等式的解集.4.会结合数轴写出某个不等式的整数解.教学重难点教学重点:利用数轴表示不等式的解集.教学难点:有特殊条件限制下的不等式的解.教学过程一、情境引入1.下列各数:2、3、4、5、6,其中哪些是方程x+3=6的解?为什么?2.能使不等式成立的未知数的值叫做不等式的解.下列数2、3、4、5、6中,哪些是不等式x+3>6的解?为什么?还有没有其它的解?3.比较方程x+3=6的解与不等式x+3>6的解有哪些相同点和不同点?二、新知学习1.不等式解集的含义:满足不等式的未知数的解的全体称为不等式的解集,必须是全部的解,缺少任何一个都不能称为解集.注意:不等式的解集是所有解的全体,缺少任何一个都不等称为解集.例如x+3>6的解集应该是x>3,尽管x>4的所有的数都满足x+3>6,但x>4不能称为x+3>6的解集,因为x>4只是x+3>6解集的一部分,缺少了3~4之间的数.2.求不等式的解集的过程,叫做解不等式.3.想一想:x>3的数有多少个?如果用数轴上的点来表示,那么大于3的数在数轴上对应的点有何规律?4.将不等式的解集在数轴上表示出来:例1、两个不等式的解集分别是x<3,x≥﹣1,分别在数轴上将它们表示出来.解:x<3在数轴上表示为:x≥﹣1在数轴上表示为:注意:对于“x<a”或“x>a”的形式,用数轴表示时应在数轴上表示数a的点处画“小空心圆圈”,小于向左边画,大于向右边画;对于“x≤a”或“x≥a”的形式,用数轴表示时应在数轴上表示数a的点处画“小实心点”,小于或等于向左边画,大于或等于向右边画.例2、写出图中所表示的不等式的解集:解:(1)图中所表示的不等式的解集为:x≤5;(2)图中所表示的不等式的解集为:x≥﹣6.例3、在数轴上表示下列不等式的解集:(1)﹣2<x≤3;(2)﹣2≤x<3.例4、根据“当x为任何正数时,都能使不等式x+2>1成立”,能不能说“不等式x+2>1的解集为x>0”?解:不正确,如当x取﹣0.5、﹣0.8、﹣0.9时,不等式x+2>1也成立.因此等式x+2>1的解集不是x>0.注意:不等式的解集是不等式的解的全体,不能只取部分.例5、不等式x<2的正整数解是()A.1 B.0,1 C.1,2 D.0,1,2分析:x<2表示小于2的数,其中正整数有1.也可以先用数轴表示解集,然后在数轴上寻找正整数值,故选择A.三、课堂总结1、什么是不等式的解集?2、如何用数轴来表示不等式的解集?。
2.3 不等式的解集1.理解并掌握不等式解和解集的概念; 2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是( )A .不等式x <3有两个正整数解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个 解析:A.不等式x <3有两个正整数解1,2,故A 正确;B.-2是不等式2x -1<0的一个解,故B 正确;C.不等式-3x >9的解集是x <-3,故C 正确;D.不等式x <10的整数解有无数个,故D 正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.变式训练:见《学练优》本课时练习“课后巩固提升”第2题探究点二:用数轴表示不等式的解集 【类型一】 在数轴上表示不等式的解集不等式3x +5≥2的解集在数轴上表示正确的是( )A. B. C.D.解析:解3x +5≥2,得x ≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 根据数轴求不等式的解关于x 的不等式x -3<3+a2的解集在数轴上表示如图所示,则a 的值是()A .-3B .-12C .3D .12 解析:化简不等式,得x <9+a2.由数轴上不等式的解集,得9+a =12,解得a =3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a 的方程是解题关键.变式训练:见《学练优》本课时练习“课后巩固提升”第3题三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.。
不等式的解集
课题:第二章第三节不等式的解集(1课时)
学习目标 1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解不等式的解、不等式的解集、解不等式这些概念的含义.
3.会在数轴上表示不等式的解集.
重点 1.理解不等式中的有关概念。
2.探索不等式的解集并能在数轴上表示出来。
难点探索不等式的解集并能在数轴上表示出来。
教学流程学校年级组
二备教师课前备课
自主学习,尝试解决自主学习:
1、在数轴上表示出3,-7.5, 0, 2.5
2、当x的值分别取-1、0、2、
3、3.5、5时,不等式x-3>0和x-4<0能分别成立吗?
解:当x取时不等式x-3>0成立;
当x取时不等式x-4<0成立
3、(1)x=5,6,8能使不等式x>5成立吗?
(2)你还能找出一些使不等式x>5成立的x的值吗?例如等。
由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?
4、现实生活中的不等式.
燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?
解:设导火线的长度应为x厘米,依题意有:即x
故导火线的长度应厘米
合作学习,信息交流合作探究:
(一)概念
1、不等式的解:
如x=3.5、5 不等式x-3>0的解. x=-1、0、2、3、3.5 不等式x-4<0的解
注意:不等式的解不唯一,有无数个解.
2、不等式的解集:
3、解不等式:
(二)借助数轴将表示不等式的解集
1、请你用自己的方式将不等式x-5>0的解集表示在数轴上,并与同伴交流.
不等式x>5的解集可以用数轴上表示的点的边部分来表示(图1-1),在数轴上表示5的点的位置上画圆圈,表示5 这个解集内.
图1-1 图1-2
2、若一个不等式的解集是x ≤4,如何表示?
可以用数轴上表示 的点及其 边部分来表示(图1-
2),在数轴上表示4的点的位置上画 圆点,表示4 这
个解集内.
3、讨论交流:不等式的解集在数轴上表示出来要注意哪些问题
上?
4.将下列不等式的解集分别表示在数轴上:
(1)x >4 (2)x <-1
(3)x ≥-2 (4)x ≤ 6
课堂达标训
练
(
5
至
8
分
钟
)
(
要
求
起
点
低
、
分
层
次
达
到
课
标
要
求
)。
1.选择题:
(1)不等式x-1>0的解有;( )
A 1个 B 2个 C 0个 D 无数个
(2)不等式2x-3≤0的解集为 ( )
A3≤x B3-≤x C23≤x D23-≤x 2、在0,-4,3,-3,51 ,4,-10中, 是方程04=+x 的解; 是不等式04≥+x 的解; 是不等式04〈+x 的解。
3、不等式x <16有多少个解?找出几个 4、将下列不等式的解集分别表示在数轴上: (1)x >4;(2)x <-1;(3)x ≥-2;(4)x ≤6; (5)x ≤0;(6)x >-2.5;(7)x <2/3;(8)x ≥4.。