13.聚合物纳米复合材料(一)
- 格式:ppt
- 大小:1.25 MB
- 文档页数:55
1.2.2石墨烯/聚合物纳米复合材料种类最近几年,以聚丙烯、聚甲基丙烯酸甲酯、聚苯胺、环氧树脂、硅橡胶等为基体的石墨烯复合材料的研究都有所报道。
其中出现了较多,关于石墨烯在高分子基体中达到纳米水平分散的研究。
这里简要介绍一些主要的石墨烯/聚合物纳米复合材料。
(1)聚苯胺(PANI)/石墨烯纳米复合材料聚苯胺(PANI)/石墨烯纳米纤维复合材料是用原位聚合方法,在酸性条件下,氧化石墨烯与苯胺单体聚合得到的[1]。
然后,使用水合肼还原不同氧化石墨烯质量比的PANI/氧化石墨烯复合材料。
最后,对还原的PANI再氧化和质子化生成PANI/石墨烯纳米复合材料。
Bhadra等[2]也报道过纯PANI这种类型的热降解。
PANI和PANI/石墨烯复合材料样品在同一温度范围内质量损失分别是40%和25%。
结果表明,PANI/石墨烯纳米复合材料热稳定性较之纯的PANI提高了。
同时,复合材料的导电率也有很大的增加。
(2)聚氨酯/石墨烯纳米复合材料使用原位聚合的方法制备功能化的石墨烯(FGS)/水性聚氨酯(WPU)纳米复合材料[3]。
由于FGS粒子在WPU基体中的均匀分散使纳米复合材料电导率比初始WPU增加了105倍。
由于导电通道的形成,在高分子基体中引发了电导率的突变。
当填充FGS仅为2%(Wt)时,可得到渗滤阀值。
(3)环氧树脂/石墨烯纳米复合材料Kuilla等[4]用原位插层聚合制备了环氧树脂石墨烯纳米复合材料环氧树脂的热导率很小。
但是,加入石墨烯后其热导率得到了显著提高。
填充5%(Wt)GO 的环氧树脂基复合材料其热导率是1W/mK,这是纯环氧树脂热导率的4倍。
当填充20%(Wt)GO的环氧树脂基复合材料其热导率增加到6.44W/mK。
这些结果表明石墨烯复合材料用于散热是一种很有前途的热界面材料。
(4)聚碳酸酯/石墨烯纳米复合材料通过熔融复合法,制备石墨和功能化石墨烯(FGS)增强的聚碳酸酯(PC)复合材料[5]。
聚合物基纳米无机复合材料的应用与发展摘要:聚合物基纳米无机复合材料是一种性能优异的新型复合材料,已成为材料科学的新热点。
本文概述了聚合物基纳米无机复合材料的发展前景及发展过程中应注意的问题。
及相应的解决方法。
关键词:聚合物;纳米;无机物;复合材料1.纳米复合材料的概念、特性、背景1.1纳米复合材料的概念纳米复合材料是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成的一类新型复合材料。
因其分散相尺寸介于宏观与微观之间的过渡区域,从而给材料的物理和化学性质带来特殊的变化,纳米复合材料正日益受到关注,被誉为“21世纪最有前途的材料”,其研究的种类已涉及无机物、有机物及非晶态材料等。
聚合物基纳米无机复合材料因其综合了有机物和无机物的各自优点,且能在力学、热学、光学、电磁学与生物学等方面赋予材料许多优异的性能,正成为材料科学研究的热点之一[1]。
1.2纳米复合材料的特性当材料粒子尺寸进入纳米量级时,因其自身具有小尺寸效应、表面效应、量子尺寸效应,以及纳米固体粒子中大量缺陷的存在,使得聚合物基纳米无机复合材料具有与众不同的特点[2]。
纳米复合材料是继单组分材料、复合材料和梯度功能材料之后的第四代材料。
1.3纳米复合材料的背景纳米复合材料的出现先于概念的形成。
早在上世纪年代末, 实际上就已出现了聚合物心纳米复合材料, 只是人们还未认识到其特殊的性能与实际应用意义〕。
纳米复合材料是年代初〕提出的, 与单一相组成的纳米结晶材料和纳米相材料不同, 它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级复合而成的复合材料, 这些固相可以是非晶质、半晶质、晶质或者兼而有之, 而且可以是无机、有机或二者都有。
纳米相与其它相间通过化学共价键、赘合键与物理氢键等作用在纳米水平上复合, 即相分离尺寸不得超过纳米数量级。
因而, 它与具有较大微相尺寸的传统的复合材料在结构和性能上有明显的区别, 近些年已成为聚合物化学和物理、物理化学和材料科学等多门学科交叉的前沿领域, 受到各国科学家和政府的重视。
第5章聚合物无机纳米复合材料聚合物无机纳米复合材料是一种由聚合物基质和无机纳米颗粒组成的新型复合材料。
这种材料具有聚合物的柔韧性和无机纳米颗粒的特殊性能,广泛应用于各个领域。
聚合物无机纳米复合材料的制备方法分为物理法和化学法两种。
物理法主要是通过机械混合的方式将聚合物和无机纳米颗粒混合在一起,然后经过加热或其他处理使它们相互结合成为复合材料。
化学法则是通过化学反应将聚合物和无机纳米颗粒连接在一起,形成固体复合材料。
聚合物无机纳米复合材料具有一系列优异的性能。
首先,由于无机纳米颗粒在复合材料中的分散性和界面相容性良好,使得聚合物基体的强度和刚度得到显著提高。
其次,无机纳米颗粒的独特性能也使复合材料具有特殊的性能,如高导热性、高阻燃性、耐腐蚀性等。
此外,聚合物无机纳米复合材料还具有较好的可加工性,可以通过注塑、挤出、压延等工艺加工成不同形状的制品。
聚合物无机纳米复合材料在各个领域有着广泛的应用。
在电子领域,它可以作为高导热的封装材料,提高电子器件的散热性能;在汽车制造领域,它可以制备耐高温、耐腐蚀的复合材料,用于制造汽车发动机等部件;在医药领域,它可以作为载药材料,提高药物的缓释性能;在建筑领域,它可以作为阻燃材料,提高建筑物的耐火性能。
然而,聚合物无机纳米复合材料在制备过程中仍存在一些问题。
首先,制备过程中的分散性和界面相容性控制是一个关键问题,直接影响着复合材料的性能。
其次,无机纳米颗粒的添加量和分散度对复合材料的性能也有着重要影响,需要进行合理的设计和控制。
此外,复合材料在使用过程中的耐久性和稳定性也需要进行进一步的研究和改进。
总的来说,聚合物无机纳米复合材料是一种具有广泛应用前景的材料,其独特的性能使其在各个领域都有着潜在的应用价值。
随着制备工艺的不断改进和性能的进一步提高,相信聚合物无机纳米复合材料将会在未来发展中得到更加广泛的应用。
文章编号:100523360(2002)20620054206聚合物基纳米复合材料的展望刘向峰,张 军(青岛化工学院高分子科学与工程学院,山东青岛266042) 摘 要: 综述了聚合物基纳米复合材料的类型、制备方法以及聚合物纳米复合材料的性能与改性机理,并对聚合物基纳米复合材料的开发应用提出了展望。
关键词: 聚合物基纳米复合材料;类型;制备方法;改性机理中图分类号:T Q050.43 文献标识码:A收稿日期:2002201205 聚合物复合材料具有优异的综合性能,广泛用于国民生产、国防科技、建筑、交通运输以及日常生活的各个领域。
随着对聚合物材料性能要求的提高以及应用范围的进一步拓宽,很多复合体系,特别是传统的无机物填充的聚合物体系受到了很大限制。
无机填料的细度、形状及表面结构等因素影响填料在基体中的分布以及与聚合物基体的界面接合,从而影响了材料的力学性能(如拉伸强度、伸长率、冲击强度等)和加工性能。
一般来讲,随填充量增加,聚合物熔体粘度增大,加工变得困难,同时力学性能下降。
无机填料的粒径超细化和表面活性化处理可以克服难分散、结合力弱、补强差的缺点。
近几年来,随着纳米技术的发展,聚合物与纳米材料的复合成为材料研究领域的一大热点。
纳米材料是指平均粒径小于100nm 的材料。
纳米粒子具有很大的比表面积,与聚合物之间产生很强的界面相互作用,能够显著提高聚合物的性能。
根据纳米材料的概念(平均粒径<100nm ),有人提出了纳米复合材料的概念。
纳米复合材料是指材料两相或多相微观结构中至少有一相的一维尺度达到纳米尺寸(1~100nm )。
因此,纳米复合材料具有超细微结构相。
因为纳米粒子的表面效应、体积效应及量子尺寸效应等特征,所以纳米粒子与聚合物基体复合形成的聚合物纳米复合材料具有很强的界面结合力,克服了传统复合材料的很多缺点,赋予材料优异的力学性能,并且具有热、电、磁等奇特的性能。
纳米复合材料拓宽了聚合物的应用领域,是一种性价比高、应用前景广泛的新兴复合材料。
聚合物材料在纳米技术中的应用第一章:引言纳米技术是指在纳米尺度上研究和应用材料、结构和设备的一门科学,具有广泛的应用前景。
聚合物材料是纳米技术领域中的重要组成部分,其独特的结构和性质使其在纳米技术中具有广泛的应用潜力。
本章将介绍聚合物材料在纳米技术中的应用。
第二章:聚合物纳米复合材料聚合物纳米复合材料是指将纳米级的填充剂嵌入到聚合物基体中,形成具有优异性能的材料。
聚合物纳米复合材料具有高强度、高韧性、高导电性和高热稳定性等特点,因此在纳米技术中得到广泛应用。
例如,在电子领域,聚合物纳米复合材料可用于制备柔性显示器、光电子器件和电池等;在医疗领域,聚合物纳米复合材料可用于制备药物输送系统和生物传感器等。
第三章:聚合物纳米粒子聚合物纳米粒子是指尺寸在纳米尺度的聚合物颗粒,具有较大的比表面积和独特的物理化学性质。
聚合物纳米粒子通过控制合成条件和改变聚合物结构可以实现调控其尺寸、形状和性质。
聚合物纳米粒子广泛应用于纳米技术中的催化、光学、生物医学等领域。
例如,在催化领域,聚合物纳米粒子可以作为催化剂载体,提高反应速率和选择性;在生物医学领域,聚合物纳米粒子可用于药物传输和细胞成像等应用。
第四章:聚合物纳米薄膜聚合物纳米薄膜是指由纳米级聚合物复合材料制备而成的薄膜材料。
聚合物纳米薄膜具有优异的力学性能和独特的表面性质,被广泛应用于纳米技术中的光学、电子和传感器等领域。
例如,在光学领域,聚合物纳米薄膜可用于制备反射镜、光学滤波器和光波导等器件;在传感器领域,聚合物纳米薄膜可用于制备高灵敏度和选择性的传感器。
第五章:聚合物纳米纤维聚合物纳米纤维是指由纳米级聚合物材料制备而成的纤维状材料。
聚合物纳米纤维具有较大的比表面积和独特的结构,具有优异的力学性能和吸附性能。
聚合物纳米纤维被广泛应用于纳米技术中的过滤、吸附和分离等领域。
例如,在环境领域,聚合物纳米纤维可用于制备高效的空气和水处理材料;在能源领域,聚合物纳米纤维可用于制备能量存储和转换材料。
纳米复合材料总复习思考题第一章:纳米材料与复合材料1、何为纳米材料和纳米技术?答:纳米材料:任一维度的尺寸在1~100nm之间的材料。
纳米技术:在分子水平控制单个原子,创造分子结构完全不同的新物质的技术。
2、纳米材料有哪些基本性质和特性?答:基本性质:小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应。
特性:光学特性、磁学特性、催化特性、增强增韧特性、储氢性质、润滑性质。
3、根据制备过程的物态,简述纳米材料的制备方法和工艺。
答:按制备过程的物态分类:气相制备方法——金属纳米材料(Au、Ag、Cu 等)液相制备方法——以水和有机溶剂为介质制备各种纳米材料和复合材料固相制备方法——机械合金化制造技术4、晶相纳米材料的形成包括哪些过程?答:晶体纳米材料的形成原理:成核、晶核生长。
5、液相法制备纳米材料有哪些优点和缺点?答:优点:颗粒表面活性好,工业化生产成本低,产物组成易控。
缺点:硬团聚,颗粒大小不均匀,纯度低,性能不够稳定6、简述用溶胶凝胶法制备纳米材料的过程。
答:溶胶凝胶法——采用特定的纳米材料前驱体在一定条件下水解,形成溶胶然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。
7、纳米材料可应用在哪些领域?答:应用于以下方面:催化剂、陶瓷材料、医用材料、磁性材料、防护材料、光电转换材料、传感器。
8、常用的纳米粉体材料有哪4种?答:常见的4种:纳米CaCO3、纳米TiO2、白碳黑、炭黑。
9、典型的纳米结构材料有哪些(至少3种)?答:常见纳米结构材料:C60 与 C70,碳纳米管、石墨烯家族、TiO2纳米管、纳米生物管、纳米棒、线、丝。
10、简述纳米TiO2光催化反应机理。
答:半导体TiO2粉体吸收紫外光后,价电子被激发到导带上。
在导带上产生光生电子(e-),在价带上产生空穴(h+)。
这种光生电子和空穴具有极高的能量,后者有极强的氧化性,前者有极强的还原性,在常温常压下,就可以将几乎所有的有机物和臭气、细菌和病毒、及部分无机物完全分解和矿化。
POSS/聚合物纳米材料的制备方法及应用本文介绍了POSS/聚合物纳米复合材料的几种制备方法及POSS纳米复合材料在航天航空,生物医药,多孔材料和光固化材料等方面的应用。
标签:POSS;纳米复合材料;制备方法;应用自19世纪50年代Scott[1]首次合成低聚物倍半硅氧烷以来,在众多研究领域引起了广泛的关注。
随着研究不断深入,多面体笼形倍半硅氧烷(POSS)已成为一种十分重要的有机-无机杂化材料,它具有无机材料的热稳定性和优异的力学性能,同时兼具有机材料的韧性好,密度低的优点。
POSS是一种具有三维结构的有机-无机纳米粒子,直径约为1~3 nm,其结构简式为(RSiO1.5)n (n≥4),其中以n=8较多,形成不同的结构类型,主要有无规、梯形、桥形、笼形等[2]。
POSS主要具有如下2个结构特点:(1)由Si和O组成的无机支架结构,赋予杂化材料良好的耐热及力学性能;(2)八个Si顶点处接有八个有机取代基团,这些有机取代基团可分为两大类:一类是惰性基团,如环己基、环戊基、乙基、异丁基等;另一类是活性基团,如各类烯基、环氧基、氨基等。
这些有机基团不仅有利于分子设计,而且可以增加POSS在有机溶剂中的溶解性,同时也能够改善与聚合物之间的相容性,更为重要的是,反应性基团可以实现POSS分子与聚合物之间的化学键合[3]。
本文主要介绍POSS/聚合物纳米复合材料的制备方法及应用进展。
1 POSS/聚合物纳米复合材料的制备方法1.1 物理共混法共混法是制备POSS/聚合物纳米复合材料的重要方法之一,POSS顶点处的8个有机取代基团,这些基团与聚合物有良好的相容性,因此,这使得它们共混并不困难。
物理共混法成本较低,加工方便,可以在一定程度上提高材料的物理性能。
(1)熔融共混Du等[4]采用熔融共混将MAP-POSS[MAP=-(CH2)3OOCC(CH3)=CH2]加入到氯乙烯、氯化聚乙烯共聚体中,制备了PVC/CPE/MAP-POSS复合材料。