工程力学 第三章 一般力系的简化
- 格式:ppt
- 大小:2.39 MB
- 文档页数:46
第三章 平面任意力系3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
08.02002.0513001.02115008.02.0511.021)(31⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b) (c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。
第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。
2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。
3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。
4、平面一般力系向已知中心点简化后得到一力和一力偶距。
5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。
6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。
三个独立的方程,可以求解三个未知量。
7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。
8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。
9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。
10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。
它是平面一般力系的特殊情况。
11.平面平行力系有两个独立方程,可以解出两个未知量。
12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。
(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。
(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。
(√)(2)该力在坐标轴上的投影一定为负值。
一、 导入1、平面任意力系引论2、特殊力系二、 新授2.1 平面任意力系的简化2.1.1 平面任意力系向一点简化1.主矢 (平面汇交力系各力的矢量和):∑∑=+⋅⋅⋅++==+⋅⋅⋅++=F F F F F FF F F nnR21'''2'1'在平面直角坐标系oxy 中,根据合力投影定理∑∑=+⋅⋅⋅++==+⋅⋅⋅++=xnxxx xnxx xRxF F F F F FF F F 21'''2'1'∑∑=+⋅⋅⋅++==+⋅⋅⋅++=ynyyyynyy yRyFF F F F FF F F 21'''2'1')主矢大小:222'2'')(()()(y x Ry Rx R F F F F F +=+=∑主矢方向:∑=Xy F F αtan2.主矩 (附加平面力偶系的合力偶):∑∑==+⋅⋅⋅++=+⋅⋅⋅++=MM M M M MM M M onooono)()()()(2121F F F F 注意:(1)一般情况下主矩与简化中心O 位置的选择有关(2)原力系与主矢和主矩的联合作用等效。
3. 结论:平面力系向一点(简化中心)简化的一般结果是一个力和一个力偶;这个力作用于简化中心,称为原力系的主矢,它等于原力系中所有各力的矢量和;这个力偶称为原力系对简化中心的主矩,它等于原力系中所有各力对于简化中心力矩的代数和。
2.1.2 简化结果的讨论 1.主矢F ,主矩 M (一般情况)合力的大小 F 、方向与主矢 F 相同;合力F 的作用线与简化中心O 点的垂直距离D=M/F2. 主矢F 不等于0,主矩 M=03. 主矢F =0,主矩 M 不等于04. 主矢F =0,主矩 M=0平面任意力系平衡的必要和充分条件为:主矢F =0 主矩M=0例2.1 一端固定于墙内的管线上受力情况及尺寸如图2.3a 所示,已知F 1=600N ,F 2=100N ,F 3=400N 。
习 题3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。
求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。
解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。
mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。
(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。
为了计算的方便,取坝的长度(垂直于图面)l =1m 。
已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。
解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b)(c)设主矢与x 轴所夹锐角为θ,则有︒=-=''=ο02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。