【管理资料】烧结-粉末冶金原理PPT(4)汇编
- 格式:ppt
- 大小:6.27 MB
- 文档页数:107
第四章单元系粉末烧结Sintering of single component§1 烧结现象(简介)纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系1. 烧结现象:1)辅助添加剂的排除(蒸发与分解)→形成内压→若内压超过颗粒间的结合强度→膨胀,起泡或开裂等→废品2)当烧结温度达到退火温度时,压制过程的内应力释放,并导致压坯尺寸胀大产生回复和再结晶现象由于颗粒接触部位在压制过程中承受大量变形,为再结晶提供了能量条件。
3)孔隙缩小,形成连通孔隙网络,封闭孔隙4)晶粒长大1.烧结温度与时间(自学)T=(2/3-4/5)Tm2.烧结密度与尺寸变化(自学)§2 烧结过程中的晶粒长大1 .烧结材料的晶粒尺寸细小:在粉末烧结初、中期,晶粒长大的趋势较小而在烧结后期才会发生可观察到的晶粒长大现象但与普通致密材料相比较,烧结材料的这种晶粒长大现象几乎可以忽略。
原因有二:孔隙、夹杂物对晶界迁移的阻碍烧结温度低于铸造温度1)对晶界的阻碍作用:烧结坯中孔隙对晶界迁移施加了阻碍作用,即孔隙的存在阻止晶界的迁移。
粉末颗粒的原始边界随着烧结过程的进行一般发展成晶界。
烧结坯中的大量孔隙大都与晶界相连接。
孔隙对晶界迁移施加的阻力:随其中孔隙尺寸的减小而降低孔隙的数量的下降而降低当孔隙度固定时,孔隙数量愈大,这种阻碍作用也愈强相应地,晶粒长大趋势亦小在相同烧结条件下,粒度粗的粉末易得到较粗大的晶粒而粒度较细的粉末则易获得较细小的晶粒结构细粉时,孔隙数量大,对晶界的阻碍作用较强但烧结温度过高或烧结时间过长,则会发生聚集再结晶当烧结坯中的孔隙尺寸和总孔隙度下降到一定程度后,孔隙的阻碍作用迅速减弱,导致晶界与孔隙发生分离现象。
这时,晶内孔隙形成。
粉末中的夹杂物也对晶粒长大施加一定的阻碍作用。
夹杂物包括硅酸盐和稳定性高的金属氧化物对晶界迁移的阻碍作用大于孔隙因为孔隙随着烧结过程的进行可减弱或消失。
而夹杂物一般难以消除(若夹杂物在烧结过程中稳定)同时,粉末烧结温度远低于铸造温度故粉末烧结材料的晶粒一般较细小2 .晶粒长大(grain growth)的阻碍作用模型若附在晶界上的孔隙的尺寸为rP,平均晶粒尺寸为Ga,则孔隙的体积分数为fP=48(rP/Ga)3假设单位晶界面积上的孔隙个数为N,则N=24/πGa2晶界迁移的驱动力F=2kγgb(1/Ga-1/G)k=4/5(for normal grain growth)孔隙或夹杂物及溶质原子对晶界的拉力为Fd=πrPγgb(N+MP/Mb)其中:孔隙的移动性MP=An/rPnAn、rn依赖于导致孔隙迁移的物质迁移机构其中δ为表面层厚度;m为摩尔质量;αˊ为蒸发速度常数晶界移动性Mb=(αC∞+1/Mo)-1Mo:晶界本征移动性,C∞:溶质原子的平均浓度因而对晶界总的拉力为Fd=πrPγgb(N+AnαC∞/rPn+An/MorPn)产生晶界与孔隙分离或形成晶内孔隙的条件是晶界迁移驱动力F≥施加在晶界上的拉力Fd容易发现rP愈小,N↑,→Fd↑细粉末难以形成内孔隙原始晶粒尺寸分布愈均匀,晶界与孔隙分离的机率也愈小晶粒长大动力学方程为Gn -Go n =kt 2<n≤3Ga为平均晶粒尺寸孔隙等的存在导致晶粒长大速度下降§3 纳米粉末的烧结特性与烧结技术1. 纳米晶材料具有传统与微米晶材料的不同特性不透明→透明;脆性→超塑性;绝缘→导体;电子材料:很高的磁阻,超磁性(可控的能带间隙)技术困难纳米粉体的烧结是为了得到纳米晶全致密的块体材料(矛盾)2.目标:关键是在保持块体材料呈现纳米晶结构,而又能获得全致密化纳米粉末具有本征的偏离平衡态的亚稳结构纳米晶结构还导致晶体结构的改变固溶度增加物理性能改变问题是1)烧结后产生晶粒粗化→非纳米晶结构活性高:烧结驱动力用于致密化和晶粒长大2)试样细寸细小,特别是难以得到出现性能突变的可供测试的样品,无法判断对应晶粒尺寸3)工程应用也受到制约为什么纳米粉末颗粒的烧结活性很高?1)烧结热力学具有巨大的表面能,为烧结过程提供很高的烧结驱动力,使烧结过程加快2)烧结动力学由烧结动力学方程(X/a)m=F(T).t/am-n纳米粉末颗粒的a值很小达到相同的x/a值所需时间很短,烧结温度降低。
粉末冶金烧结原理
粉末冶金烧结是一种常用的制备金属和陶瓷材料的工艺。
其原理基于粉末颗粒在高温下通过表面扩散和颗粒间的相互作用力而实现的固相结合。
首先,通过研磨和混合的方式将所需的金属或陶瓷粉末混合均匀。
混合的目的是使不同粉末颗粒在烧结过程中能够更好地接触和相互结合。
接下来,将混合后的粉末填充到模具中,并施加一定的压力。
压力的作用是使粉末颗粒之间产生一定的接触力,这样可以促进烧结过程中的颗粒扩散。
然后,将填充好的模具放入烧结炉中,进行高温处理。
在高温下,粉末颗粒表面会发生表面扩散,即颗粒表面的原子或离子会向颗粒内部扩散。
同时,由于高温下颗粒间的相互作用力增强,颗粒之间产生局部的结合。
经过一段时间的高温处理,粉末颗粒表面扩散和颗粒间的结合逐渐扩展到整个颗粒,形成了一个密实的整体。
这个过程称为固相烧结,通过这种方式,粉末的体积会明显减小。
最后,将烧结后的样品冷却并取出,进行进一步的加工和处理。
根据需要,可以对烧结样品进行后续的热处理、机加工等工艺步骤。
总之,粉末冶金烧结是一种通过高温和压力作用下,将粉末颗
粒固相结合的制备材料的方法。
通过控制烧结过程中的温度、压力和时间等参数,可以获得具有预期性能的金属和陶瓷材料。
1第四章烧结4.1 4.1 概述概述烧结是粉末冶金生产过程中最基本的工序之一烧结是粉末冶金生产过程中最基本的工序之一。
烧结是粉末和粉末压坯烧结是粉末和粉末压坯,,在适当温度和气氛下加热所发生的现象或过程所发生的现象或过程。
2按烧结过程有无明显的液相出现和烧结系统的组成分为和烧结系统的组成分为::1)单元系烧结2)多元系固相烧结3) 3) 多元系液相烧结多元系液相烧结3粘结阶段颗粒的原始接触点或面转变成晶体结合颗粒的原始接触点或面转变成晶体结合,,即通过成核即通过成核、、结晶长大等原子过程形成烧结颈等原子过程形成烧结颈。
烧结体密度烧结体密度、、烧结体强度烧结体强度、、导电性等的变化烧结颈长大阶段原子向颗粒结合面迁移原子向颗粒结合面迁移,,烧结颈扩大烧结颈扩大,,颗粒间距缩小颗粒间距缩小,,晶粒长大,晶界越过孔隙移动晶界越过孔隙移动。
烧结体密度烧结体密度、、烧结体强度等的变化闭孔隙球化和缩小阶段烧结体致密度达到烧结体致密度达到90%90%90%以上以上以上,,孔隙闭合后孔隙闭合后,,孔隙形状趋于球形并缩小缩小。
4.2 4.2 烧结的基本过程烧结的基本过程41)烧结为什么会发生烧结为什么会发生??2)烧结是怎样进行的烧结是怎样进行的??4.34.3 烧结理论的两个最基本的问题51)烧结为什么会发生烧结为什么会发生??烧结是系统自由能减低的过程。
•由于颗粒结合面的增大和颗粒表面的平直化,粉末体的总表面积和总表面自由能减小•粉末体内孔隙的总体积和总表面积减小•粉末内晶格畸变的消除62)烧结是怎样进行的烧结是怎样进行的??烧结的机构和动力学问题,研究烧结过程中各种物质迁移方式以及速率。
7单元系烧结是指:纯金属或有固定成分的化合物的粉末在固态下的烧结,不会出现新组成物或者新相,也不会出现凝聚状态的改变。
4.4 4.4 单元系烧结单元系烧结8一、烧结温度和时间•单元系的烧结主要机构是扩散和流动构是扩散和流动。
粉末冶金原理-烧结烧结是粉末冶金中一种常用的加工方法,它通过高温和压力的作用,将金属粉末粒子相互结合成致密的块状体,从而获取所需的材料性能和形状。
本文将介绍烧结的原理、方法以及应用。
1. 烧结原理粉末冶金烧结的原理基于固相扩散和短程扩散的作用。
在烧结过程中,金属粉末颗粒之间的接触面发生原子间的扩散,使得粒子之间形成更强的结合力,从而实现粉末的聚结。
烧结过程中,首先是金属粉末颗粒之间的接触,原子开始扩散。
随着温度的升高,扩散速率也随之增加。
当粉末颗粒之间的接触点扩散到一定程度后,开始形成颗粒之间的原子键合。
键合的形成使得颗粒间的结合力增强,同时形成新的晶体结构或弥散态结构。
2. 烧结方法2.1 传统烧结传统烧结是指采用外加热源和压力来实现烧结过程。
该方法通常包括以下几个步骤:1.装料:将金属粉末和所需添加剂按照一定比例混合,并形成一定的装料形状,如坯料或颗粒。
2.预压:将装料放入模具中,并施加一定的压力,使装料初步固结成形。
3.高温烧结:将装料放入烧结炉中,在一定的温度下暴露一段时间,使装料中的金属粉末颗粒扩散、晶粒长大并结合。
4.冷却:烧结完成后,将烧结块从炉中取出,经过冷却以稳定材料结构。
5.表面处理:根据需求,对烧结块进行加工、修整和处理,以得到最终所需的形状和表面特性。
2.2 反应烧结反应烧结是指在烧结过程中引入化学反应,利用固相反应进行金属粉末的结合。
相较于传统烧结,反应烧结可以实现更高的烧结温度,加快晶粒生长和结合的速度。
反应烧结的具体步骤包括:1.装料:将金属粉末和反应剂按照一定比例混合,并形成装料。
2.高温烧结:将装料放入烧结炉中,在一定的温度下暴露一段时间。
在高温下,反应剂与金属粉末发生固相反应,生成新的物质并结合金属粉末颗粒。
3.冷却:烧结完成后,将烧结块从炉中取出,经过冷却以稳定材料结构。
4.表面处理:根据需求,对烧结块进行加工、修整和处理,以得到最终所需的形状和表面特性。
3. 烧结应用烧结方法在粉末冶金中具有广泛的应用。