2.3钢筋混凝土受压构件
- 格式:ppt
- 大小:12.01 MB
- 文档页数:43
分别说明钢筋混凝土轴心受压构件中纵向受力钢筋和箍筋的作用钢筋混凝土轴心受压构件中纵向受力钢筋和箍筋的作用背景介绍•钢筋混凝土是一种常用的结构材料,广泛应用于建筑、桥梁和其他重要工程中。
•在钢筋混凝土构件中,轴心受压构件承受的是由于受力方向与构件轴线方向一致而产生的压力。
纵向受力钢筋的作用•纵向受力钢筋主要用于承担轴向压力,或称为受压钢筋。
•纵向受力钢筋通过承担轴向拉力,延长了构件的使用寿命和承载能力。
•受压钢筋的作用是抵消混凝土的压缩应力,减缓和抑制构件的产生和扩展裂缝。
•受压钢筋能够提高构件的刚度和强度,增加构件的抗弯和抗剪能力。
箍筋的作用•箍筋是纵向受力钢筋的配筋,主要用于抵抗构件在受压过程中的侧向膨胀。
•箍筋可以增加钢筋混凝土轴心受压构件的抗剪能力,提高构件的整体稳定性。
•使用箍筋可以有效地提升构件的抗震性能,减小地震荷载对结构的影响。
•箍筋的作用还包括控制和抑制构件的纵向受力钢筋产生侧向屈曲和失稳。
结论•钢筋混凝土轴心受压构件中的纵向受力钢筋和箍筋发挥着重要的作用。
•纵向受力钢筋能够承担轴向拉力,抵消混凝土的压缩应力,提高构件的使用寿命和承载能力。
•箍筋则用于抵抗构件在受压过程中的侧向膨胀,增加抗剪能力和整体稳定性。
•合理设计和布置纵向受力钢筋和箍筋可以最大限度地提高构件的抗震性能和使用寿命。
钢筋混凝土轴心受压构件中纵向受力钢筋和箍筋的作用背景介绍•钢筋混凝土是一种常用的结构材料,广泛应用于建筑、桥梁和其他重要工程中。
•在钢筋混凝土构件中,轴心受压构件承受的是由于受力方向与构件轴线方向一致而产生的压力。
纵向受力钢筋的作用•纵向受力钢筋主要用于承担轴向压力,或称为受压钢筋。
•受压钢筋通过承担轴向拉力,延长了构件的使用寿命和承载能力。
•受压钢筋的作用是抵消混凝土的压缩应力,减缓和抑制构件的产生和扩展裂缝。
•受压钢筋能够提高构件的刚度和强度,增加构件的抗弯和抗剪能力。
箍筋的作用•箍筋是纵向受力钢筋的配筋,主要用于抵抗构件在受压过程中的侧向膨胀。
3、钢筋混凝土受压构件的强度计算第三章钢筋混凝土受压构件的强度计算桥梁结构中的桥墩、桩、主拱圈、斜拉桥的索塔,以及单层厂房柱、拱、屋架上弦杆,多层和高层建筑中的框架柱、剪力墙、筒体,烟囱的筒壁等均属于受压构件。
受压构件按受力情况分为轴心受压构件和偏心受压构件两类。
第一节配有纵向钢筋和普通箍筋的轴心受压构件当构件受到位于截面形心的轴向压力时,为轴心受压构件。
钢筋混凝土轴心受压构件按箍筋的作用及配置方式可分为普通箍筋柱和螺旋箍筋柱两种,本节介绍配有纵向钢筋和普通箍筋的轴心受压构件。
3.1.1 一般构造要求1、混凝土标号轴心受压构件的正截面承载力,主要由混凝土提供,一般多采用C20~C30混凝土,或者采用更高标号的混凝土。
2、截面尺寸轴心受压构件截面尺寸不宜过小,因长细比越大,承载力越小,不能充分利用材料强度。
矩形截面的最小尺寸不宜小于250mm。
3、纵向钢筋纵向受力钢筋一般选R235、HRB335级钢筋,有特殊要求时,可用HRB400级钢筋。
钢筋的直径不应小于12mm,净距不应小于5Omm 且不应大于35Omm。
在构件截面上,纵向受力钢筋至少应有4根并且在截面每一角隅处必须布置一根。
柱内设置纵向钢筋的目的是:a、提高柱的承载力,以减小构件的截面尺寸;b、防止因偶然偏心产生的破坏;c、改善构件破坏时的延性;d、减小混凝土的徐变。
为此,《公桥规》规定:构件全部纵向钢筋的配筋百分率不应小于0.5%(当混凝土强度等级在C50及以上时,不应小于0.6%);同时,一侧钢筋的配筋百分率不应小于0.2%。
轴心受压构件在加载后荷载维持不变的条件下,由于混凝土徐变,随着荷载作用时间的增加,混凝土的压应力逐渐变小,钢筋的压力逐渐变大,初期变化比较快,经过一定时间后趋于稳定。
在荷载突然卸载时,构件回弹,由于混凝土徐变变形的大部分不可恢复,故当荷载为零时,会使柱中钢筋受压而混凝土受拉,若柱的配筋率过大,还可能将混凝土拉裂;若柱中纵筋和混凝土之间有很强的粘应力时,则可能同时产生纵向裂缝。
《混凝土结构设计原理》思考题及习题(参考答案)重庆大学第1章绪论思考题1.1钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有明显预兆,属于延性破坏类型。
在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。
由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。
1.2钢筋混凝土结构的优点有:1)经济性好,材料性能得到合理利用;2)可模性好;3)耐久性和耐火性好,维护费用低;4)整体性好,且通过合适的配筋,可获得较好的延性;5)刚度大,阻尼大;6)就地取材。
缺点有:1)自重大;2)抗裂性差;3)承载力有限;4)施工复杂;5)加固困难。
1.3本课程主要内容分为“混凝土结构设计原理”和“混凝土结构设计”两部分。
前者主要讲述各种混凝土基本构件的受力性能、截面设计计算方法和构造等混凝土结构的基本理论,属于专业基础课内容;后者主要讲述梁板结构、单层厂房、多层和高层房屋、公路桥梁等的结构设计,属于专业课内容。
学习本课程要注意以下问题:1)加强实验、实践性教学环节并注意扩大知识面;2)突出重点,并注意难点的学习;3)深刻理解重要的概念,熟练掌握设计计算的基本功,切忌死记硬背。
第2章混凝土结构材料的物理力学性能思考题2.1①混凝土的立方体抗压强度标准值f cu,k是根据以边长为150mm的立方体为标准试件,在(20±3)℃的温度和相对湿度为90%以上的潮湿空气中养护28d,按照标准试验方法测得的具有95%保证率的立方体抗压强度确定的。
钢筋混凝土轴心受压构件的稳定系数表1. 引言钢筋混凝土轴心受压构件是建筑和结构工程中常见的承载元素之一。
在设计和分析过程中,了解和计算轴心受压构件的稳定性是至关重要的。
稳定系数表是一种用于评估构件稳定性的工具,它提供了不同参数下的稳定系数值,以帮助工程师进行合理的设计和分析。
2. 稳定性分析原理在设计钢筋混凝土轴心受压构件时,需要考虑两个主要因素:弯曲和稳定。
弯曲是由于外部荷载引起的构件弯曲变形,而稳定则是指防止构件产生整体失稳或局部失稳。
对于轴心受压构件来说,局部失稳通常是最主要的问题。
轴心受压构件在受到外部荷载作用时,会发生弯矩和剪力分布。
当荷载较小或者构件尺寸较小时,这些力可以通过钢筋来承担。
然而,当荷载增加或者构件尺寸增大时,构件可能会发生局部失稳,即产生屈曲。
为了避免局部失稳,需要计算和评估构件的稳定系数。
3. 稳定系数表的编制方法稳定系数表是通过理论计算和试验结果得出的。
首先,需要根据轴心受压构件的几何形状和材料特性,采用适当的理论模型进行计算。
常见的理论模型包括欧拉公式、约束弯矩法等。
然后,通过试验验证理论计算结果的准确性,并得出一组稳定系数值。
稳定系数表通常包含以下信息: - 构件几何参数:包括截面形状、截面尺寸等。
- 材料特性:包括混凝土和钢筋的强度、弹性模量等。
- 荷载条件:包括作用在构件上的轴力、弯矩等。
- 稳定系数值:根据不同参数组合得到的稳定系数。
4. 使用稳定系数表进行设计与分析在实际工程中,可以根据给定的荷载条件和构件几何参数,在稳定系数表中查找对应的稳定系数值。
然后,将这些值与规范要求进行比较,以确定构件是否满足稳定性要求。
如果稳定系数小于规范要求的最小值,说明构件可能存在局部失稳的风险。
此时,需要采取措施来增加构件的稳定性,例如增加截面尺寸、增加钢筋配筋量等。
5. 稳定系数表的应用范围和限制稳定系数表适用于常见的轴心受压构件,例如柱子、墙体等。
然而,在某些特殊情况下,如非常大的荷载或非常细长的构件,稳定系数表可能不适用。
钢筋混凝土轴心受压构件的稳定系数是一个重要的参数,用于评估构件在受压状态下的稳定性。
在钢筋混凝土结构设计中,轴心受压构件承受的压力会引起构件的变形和破坏,因此需要通过稳定系数来考虑构件的稳定性,确保结构的安全性和可靠性。
在本文中,我将深入探讨钢筋混凝土轴心受压构件的稳定系数表,并分享一些关于这个主题的观点和理解。
1. 稳定系数的定义和意义稳定系数是指构件在受压状态下的稳定性与材料强度之间的比值。
它的值代表了构件抵抗稳定性失效的能力,是判断结构是否满足稳定性要求的关键指标。
稳定系数的计算通常基于一定的假设和理论模型,考虑到材料的弹性模量、几何形状、截面特性以及加载方式等因素。
通过建立稳定系数表,我们可以根据构件的几何形状和受力情况,查找相应的稳定系数值,从而进行结构设计和评估。
2. 稳定系数表的结构和内容稳定系数表包括了各种不同构件和截面形状的稳定系数数值,供工程师和设计人员参考使用。
它通常按照构件的类型和截面形状进行分类,提供了一系列的稳定系数数值。
稳定系数表的结构可以按照以下方式进行组织:2.1 构件类型分类:比如梁、柱、墙等,每种构件类型都有独立的稳定系数表。
2.2 截面形状分类:对于每种构件类型,按照不同的截面形状建立子表,比如矩形截面、圆形截面、T形截面等。
2.3 参数分类:在每个子表中,根据构件的尺寸、材料强度和约束条件等参数,列出相应的稳定系数数值。
3. 稳定系数表的应用和设计原则稳定系数表是钢筋混凝土结构设计中的重要工具,为设计人员提供了参考数值,帮助他们评估和选择合适的构件尺寸和截面形状。
在使用稳定系数表时,设计人员应该遵循以下几个原则:3.1 参考适用范围:稳定系数表通常针对一定的材料强度、构件尺寸范围和约束条件进行编制,设计人员需要根据实际情况选择合适的表格进行参考。
3.2 综合考虑各因素:稳定系数的数值取决于材料的强度、构件的几何形状和加载方式等因素,设计人员需要对这些因素进行综合考虑,以确保稳定系数的准确性和适用性。
长沙理工水工钢筋混凝土结构学教案一、课程简介1.1 课程名称:水工钢筋混凝土结构学1.2 课程性质:专业核心课1.3 学时与学分:理论教学64学时,实验教学16学时,共计4学分。
1.4 先修课程:材料力学、结构力学、水利工程概论1.5 课程目标:使学生掌握水工钢筋混凝土结构的基本理论、设计方法和施工技术,培养学生的工程实践能力和创新精神。
二、教学内容2.1 钢筋混凝土的基本理论2.1.1 钢筋混凝土的组成及分类2.1.2 钢筋混凝土的受力分析2.1.3 钢筋混凝土的破坏形态2.1.4 钢筋混凝土的力学性能2.2 钢筋混凝土结构设计2.2.1 设计原则与方法2.2.2 受弯构件设计2.2.3 轴心受压构件设计2.2.4 偏心受压构件设计2.2.5 钢筋混凝土梁、板、柱的设计2.3 钢筋混凝土结构施工技术2.3.1 钢筋加工与安装2.3.2 混凝土制备与运输2.3.3 混凝土浇筑与养护2.3.4 施工质量控制与验收三、教学方法与手段3.1 教学方法3.1.1 讲授:讲解基本理论、设计方法和施工技术。
3.1.2 案例分析:分析实际工程案例,加深学生对理论知识的理解。
3.1.3 讨论与提问:鼓励学生提问、参与讨论,提高学生的思维能力。
3.2 教学手段3.2.1 投影仪:辅助讲解,展示图片、图表等教学资料。
3.2.2 计算机软件:利用相关软件进行结构分析与设计,提高学生的实践能力。
四、教学安排4.1 课时分配4.1.1 理论教学:64学时4.1.2 实验教学:16学时4.2 教学进度4.2.1 钢筋混凝土的基本理论(2.5周)4.2.2 钢筋混凝土结构设计(4周)4.2.3 钢筋混凝土结构施工技术(2周)4.2.4 课程设计(2周)4.2.5 实验教学(16学时)五、考核方式5.1 期末考试:包括名词解释、填空题、选择题、计算题和简答题,占总分的70%。
5.2 课程设计:包括结构设计和水工混凝土施工图绘制,占总分的30%。