概率算法
- 格式:ppt
- 大小:131.50 KB
- 文档页数:24
抽奖概率-三种算法最近接触到⼀个抽奖需求,加上平时玩的暗⿊3很少掉暗⾦装备,就抽空学习下这类概率问题,暂时按⽹络称为掉宝类型概率。
例如游戏中打败⼀个boss,会掉落下⾯其中⼀个物品,⽽每个物品都有⼀定概率:1. 靴⼦ 20%2. 披风 25%3. 饰品 10%4. 双⼿剑 5%5. ⾦币袋 40%现在的问题就是如何根据概率掉落⼀个物品给玩家。
⼀. ⼀般:⽣成⼀个列表,分成⼏个区间,例如列表长度100,1-20是靴⼦的区间,21-45是披风的区间等,然后随机从100取出⼀个数,看落在哪个区间。
算法时间复杂度:预处理O(MN),随机数⽣成O(1),空间复杂度O(MN),其中N代表物品种类,M则由最低概率决定。
⼆、离散算法:也就是上⾯的改进,竟然1-20都是靴⼦,21-45都是披风,那抽象成⼩于等于20的是靴⼦,⼤于20且⼩于等于45是披风,就变成⼏个点[20,45,55,60,100],然后也是从1到99随机取⼀个数R,按顺序在这些点进⾏⽐较,知道找到第⼀个⽐R⼤的数的下标,⽐⼀般算法减少占⽤空间,还可以采⽤⼆分法找出R,这样,预处理O(N),随机数⽣成O(logN),空间复杂度O(N)。
请点击查看详细:三、Alias MethodAlias Method就不太好理解,实现很巧妙,推荐先看看这篇⽂章:⼤致意思:把N种可能性拼装成⼀个⽅形(整体),分成N列,每列⾼度为1且最多两种可能性,可能性抽象为某种颜⾊,即每列最多有两种颜⾊,且第n列中必有第n种可能性,这⾥将第n种可能性称为原⾊。
想象抛出⼀个硬币,会落在其中⼀列,并且是落在列上的⼀种颜⾊。
这样就得到两个数组:⼀个记录落在原⾊的概率是多少,记为Prob数组,另⼀个记录列上⾮原⾊的颜⾊名称,记为Alias数组,若该列只有原⾊则记为null。
之前的例⼦,为了便于演⽰换成分数1. 靴⼦ 20% -> 1/42. 披风 25% -> 1/53. 饰品 10% -> 1/104. 双⼿剑 5% -> 1/205. ⾦币袋 40% -> 2/5然后每个都乘以5(使每列⾼度为1),再拼凑成⽅形拼凑原则:每次都从⼤于等于1的⽅块分出⼀⼩块,与⼩于1的⽅块合成⾼度为1由上图⽅形可得到两个数组:Prob: [3/4, 1/4, 1/2, 1/4, 1]Alias: [4, 4, 0, 1, null] (记录⾮原⾊的下标)之后就根据Prob和Alias获取其中⼀个物品随机产⽣⼀列C,再随机产⽣⼀个数R,通过与Prob[C]⽐较,R较⼤则返回C,反之返回Alias[C]。
蒙特卡洛算法计算概率分布
蒙特卡洛算法是一种基于随机模拟的计算方法,可以用于计算概率分布。
下面是一个使用蒙特卡洛算法计算概率分布的示例:
假设我们要计算一个函数 $f(x)$ 在区间 $[a,b]$ 上的概率分布。
我们可以按照以下步骤进行:
1. 生成随机数:在区间 $[a,b]$ 上生成大量的随机数。
这些随机数可以通过随机数生成器或者其他方法获得。
2. 计算函数值:对于每个生成的随机数 $x_i$,计算函数 $f(x_i)$ 的值。
3. 统计分布:统计函数值出现的次数,并将其与总的随机数数量相除,得到函数值在区间 $[a,b]$ 上的概率分布。
通过重复上述步骤多次(通常称为“蒙特卡洛模拟”),我们可以获得函数在区间$[a,b]$ 上的概率分布的估计。
需要注意的是,蒙特卡洛算法的准确性取决于生成的随机数数量和质量。
为了获得更准确的结果,通常需要生成大量的随机数,并采用合适的随机数生成方法。
蒙特卡洛算法在许多领域都有应用,如统计学、计算机科学、金融工程等。
它可以用于计算复杂问题的近似解,或者对难以直接计算的概率分布进行估计。
这只是一个简单的示例,实际应用中可能需要根据具体问题进行适当的修改和扩展。
蒙特卡洛算法是一种强大的工具,但在使用时需要谨慎考虑其局限性和误差来源。
希望这个解释对你有帮助!如果你有任何其他问题,请随时提问。
概率公式算法
概率公式是用来计算概率的数学公式。
常用的概率公式有:
贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B)
高斯公式:P(x|u,s) = 1 / (sqrt(2 * pi) * s) * e^(-1/2 * ((x - u) / s)^2)
条件概率公式:P(A|B) = P(A,B) / P(B)
独立性公式:P(A,B) = P(A) * P(B)
这些公式可以用来计算不同情况下的概率,在机器学习、数据分析等领域有广泛应用。
除了上面提到的几个常用的概率公式,还有其他一些常用的概率公式,如:
概率密度函数(PDF):用来描述连续型随机变量的概率密度。
概率质量函数(PMF):用来描述离散型随机变量的概率密度。
狄利克雷公式:用来计算组合概率。
随机变量转移矩阵:用来描述随机变量之间的转移关系。
多项式公式:用来计算多项式的概率分布。
期望值公式:用来计算随机变量的期望值。
这些公式都有着独特的应用领域,在统计学、概率论、数学建模等领域有着重要的作用。
1到10牛牛各种概率计算1、52张牌,每人派5张牌。
5张牌中,其中3张加起来点数为10的倍数的,为牛,而另外2张加起来,取个位数为点数。
J、Q、K都当10点。
如K,3,7,6,8 就是K,3,7为牛,6,8为4点。
2、把纸牌按点数分为1,2,3,4,5,6,7,8,9,10,10种类型。
KQJ10为一种。
3、胜负方式,有点算点数,点数相同算最大的牌。
没点都牌大。
10点为牛牛。
分情况计算:1)五张都为10的情况:C5/16=0.0016806722689076;2)四张为10,一张为1~9的情况:C4/16*C1/36=0.0252100840336134;3)三张为10,二张为1~9的情况:C3/16*C2/36=0.135746606334842;4)二张为10,三张为1~9的情况:C2/16*C3/36=0.32967032967033;5)一张为10,四张为1~9的情况:C1/16*C4/36=0.3626373626373626;6)五张都为1~9的情况:C5/36=0.1450549450549451.分析:其中1),2),3)至少有3张为10,所以肯定有牛。
4)当中的三张和为10,20或者二张和为10。
5)当中四张1~9当中3张和为10,20或者2张和为10。
6)当中:三张加起来等于10或者20的情况。
和为10的有:118,127,136,145,226,235,334 ,442。
和为20的有:992,983,974,965,884,875,776,668。
将这16种情况按是否有重号重新分类:118,226,334,442,992,884,776,668 重号的有8种。
每种个有24种情况1;127,136,145,235,983,974,965,875不重号的有8种。
每种个有64种情况2;19,28,37,46,55 2个和为10。
情况3。
4)三张为1~9, 3张中选2张和为10,或者3张和为10,20,情况1,2的共有(24+64)*8*(16*15/2)=84480种。
二项分布算法
二项分布算法是一种用于计算二项分布概率的算法。
在概率论中,二项分布是指在进行n次独立的是/非试验中,成功的次数的概率分布。
在二项分布中,每次试验只有两个可能结果:成功或失败。
成功的概率为p,失败的概率为1-p。
我们可以使用二项分布算法来计算
在n次试验中,成功k次的概率。
具体方法如下:
1. 定义二项分布概率密度函数:P(k) = C(n,k) * p^k *
(1-p)^(n-k),其中C(n,k)表示从n个物品中选择k个物品的组合数。
2. 通过计算公式得出概率:P(k) = n! / (k! * (n-k)!) * p^k * (1-p)^(n-k),其中!表示阶乘。
3. 针对每一个k,都进行一次计算,得出概率P(k)。
4. 将所有的P(k)相加,得出二项分布的概率。
二项分布算法的应用非常广泛,例如在生物学中,可以用它来计算某种基因在群体中出现的概率;在金融学中,可以用它来计算投资的风险。
- 1 -。
九年级概率算法知识点归纳总结概率算法是概率论与数学算法结合的一门学科,主要研究与应用概率相关的数学方法与计算机算法。
它在现代科学与工程中具有广泛的应用,包括人工智能、数据挖掘、生物信息学等领域。
在初中九年级的数学学习中,概率算法也是一个重要的知识点。
本文将对九年级概率算法的相关知识进行归纳总结,以帮助同学们更好地理解与掌握。
一、概率的基本概念与性质1.样本空间与事件:样本空间是指一个随机试验所有可能结果的集合,事件是样本空间的子集。
概率的计算是建立在样本空间与事件的基础上的。
2.概率的基本性质:概率介于0与1之间,对于必然事件,概率为1;对于不可能事件,概率为0。
3.等可能原则:在一些随机试验中,如果每一个结果发生的概率相等,那么事件A发生的概率可用A中的有利结果数除以样本空间中所有可能结果的数目来计算。
二、概率的运算规则1.加法规则:对于两个互不相容事件A和B,即事件A和B不可能同时发生,其和事件发生的概率等于事件A和事件B分别发生的概率之和。
2.减法规则:对于事件A和事件B,其差事件A-B的概率等于事件A发生的概率减去事件A和事件B同时发生的概率。
3.乘法规则:对于两个独立事件A和B,即事件A的发生不影响事件B的发生,其交事件发生的概率等于事件A发生的概率乘以事件B在事件A发生的条件下发生的概率。
4.全概率公式:对于一组互不相容的事件A1, A2, ..., An,它们构成了样本空间的划分,即它们的和事件为样本空间,那么对于任一事件B,其概率可以由每个事件和事件B的交集的概率之和来计算。
三、条件概率与贝叶斯定理1.条件概率:在事件A发生的条件下事件B发生的概率记作P(B|A),表示已知事件A发生,在A的前提下事件B发生的可能性大小。
2.乘法定理:根据条件概率的定义,可以得到P(A∩B) = P(B|A) *P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。
3.贝叶斯定理:根据乘法定理,可以得到贝叶斯定理的表达式,它表达了在已知事件A发生的条件下,事件B发生的概率与在已知事件B发生的条件下,事件A发生的概率之间的关系。
概率算法-n皇后的LV算法概率算法结束了,要交作业了,其中⼀个题⽬是⽤LV算法解n皇后问题,并且给出当皇后数为12-20时,对于的随机放置皇后数(stepVegas)值。
不想全部从头写,打算找⼀个⽤回溯法求解n皇后的正确代码(因为lv算法⾥⾯有⽤到回溯部分),如果找到了,只需修改部分就可以⽤了。
虽然有个⼩错误,但是其它都对,算法写的很精炼。
有了回溯法,修改就⽅便了。
回溯法是采⽤了穷举遍历的思想,优点是可以⼀次性找到所有解,缺点是算法性能较差。
由于n皇后的解是离散分布的,导致了在遍历搜索的过程中,很多都是做“⽆⽤功”。
这个时候LV算法就有了⽤武之地,先随机放置stepVegas个皇后(在前stepVegas⾏),剩下的n-stepVegas⾏调⽤回溯算法就⾏了。
由于遍历搜索的范围缩⼩,算法所需时间减少,响应的返回的解也只是部分解。
但是可以通过多次执⾏返回更多的解。
这⾥还有⼀个问题就是stepVegas的值取多少最好,stepVegas过⼩,遍历搜索范围缩⼩不明显,算法时间过长,返回的解多。
stepVegas过⼤,遍历搜索范围⼩,但是随机放置stepVegas个满⾜要求的皇后同样需要花费⼤量时间。
事实上stepVegas的个数与n皇后解的分布情况有关。
举个例⼦,对于8后⽽⾔⼀共有92个解:简要统计第1⾏皇后放第1列的解有4个。
第1⾏皇后放第2列的解有8个。
.....分析前两个皇后第1⾏皇后放第1列,第2⾏皇后必须放5,6,7才有解。
7解最多。
第1⾏皇后放第2列,第2⾏皇后必须放4,5,6,7,8才有解。
第1⾏皇后放第3列,第2⾏皇后必须放1,5,6,7,8才有解。
6解最多。
.....可以看到⽆论第⼀⾏皇后也即第⼀个皇后放哪,都有可⾏解。
这个时候stepVegas=1显然不好,因为要返回所有解就必须随机取遍所有位置。
要返回所有解的话整体上的性能还不如回溯法。
stepVegas=2,由于并不是每个随机组合都有解,此时可以体现LV算法的优势。
1、概率算法:允许算法在执行的过程中随机的选择下一个计算步骤。
2、在多数情况下,当算法在执行过程中面临一个选择是:随机性选择常比最优选择省时,因此概率算法可在很大程度上降低算法复杂性。
3、概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果(所需时间或计算结果)。
4、概率算法包括:▪数值概率算法:求解数值问题的近似解,精度随计算时间增加而不断提高▪舍伍德算法:消除算法最坏情形行为与特定势力之间的关联性,并不提高平均性能,也不是刻意避免算法的最坏情况行为▪拉斯维加斯算法:求解问题的正确解,但可能找不到解▪蒙特卡罗算法:求解问题的准确解,但这个解未必正确,且一般情况下无法有效判定正确性5、随机数:随机数在概率算法设计中扮演着十分重要的角色。
在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
6、线性同余法是产生伪随机数的最常用的方法。
7、数值概率算法:通常用于数值问题的求解中,求解数值问题的近似解,精度随计算时间增加而不断提高例如:设有一半径为r的圆及其外切四边形。
向该正方形随机地投掷n个点。
设落入圆内的点数为k。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为224rr∏。
所以当n足够大,4kn∏=程序一:double Darts(int n){ // 用随机投点法计算π值static RandomNumber dart; int k=0;for (int i=1;i <=n;i++) {double x=dart.fRandom(); double y=dart.fRandom(); if ((x*x+y*y)<=1) k++;}return 4*k/double(n);}计算定积分,同样的道理可以阐述到10()I f x dx=⎰表示曲线以下面积,那么落入曲线下面积的概率为()11000{()}()f xrP y f x dydx f x dx≤==⎰⎰⎰,即可知I mn≈8、舍伍德算法:设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。
通过直观和经验就能知道概率的几个基本命题,也可以说是公理,苏联的数学家柯尔莫哥洛夫总结了3条概率公理。
1. 事件发生的概率不小于02. 集合中的事件必有一件发生,则发生的概率之和等于13. 集合中事件互相不容,没有交集,则发生至少一个的概率等于每个事件概率之和。
概率计算方法一:频次算法即分别考虑每种事件发生的频次,单个事件频次除总频次,即是概率值,或者单个事件频次除以其他事件频次,然后再转化为概率值。
例如:邮件箱中收到大量邮件,有诈骗邮件,有正常邮件。
根据统计,诈骗邮件中出现文字:“中奖”占30%,出现“www.”占40%;正常邮件出现“中奖”占1%,出现“www.”占2%。
数据统计显示邮箱中诈骗邮件占比为20%,随机抽取一封邮件发现含有“中奖”和“www.”,这封邮件是诈骗邮件的概率是多少。
想直接列出概率算式有点难度,通过频次计算就比较简单。
这封邮件要么是诈骗邮件,要么是正常邮件。
先考虑含有“中奖”和“www.”的正常邮件有多少:(1-20%) x 1% x 2% = 160 %%%再考虑含有“中奖”和“www.”的诈骗邮件有多少20% x 30% x 40% = 240%%%两者比值160 :240 = 2:3因为这封邮件不是正常邮件就是诈骗邮件,两者的概率之和是1,所以诈骗邮件的概率就是:3 :(2+3)= 60%。
从这个例子中可以看出,用频次计算概率,就是分别考虑所有情况发生的频次,然后算出比值,然后再看总概率等于多少,若是互斥事件,总概率就是1,所以频次比就可以转化为概率值。
这样用分别考虑各自的频次的方法就能降低思考难度。
再举个取球的例子,两个盒子,甲盒子装有70个白球30个红球,乙盒子装有20个白球80个红球。
随意拿出一个盒子,取出一个球看颜色,再放回,连续取20次,发现10个白球10个红球。
问拿出的盒子是甲的概率多少。
用频次算法极为简单,分别算频次。
甲盒子中拿出10个白球和10个红球的频次是0.7^10 x 0.3^10 乙盒子同样算法0.2^10 x 0.8^10频次之比就是概率之比,因为是概率之和等于1,就很容易把频次比转化为概率。