物理化学第三章分析解析
- 格式:ppt
- 大小:885.50 KB
- 文档页数:62
程兰征版物理化学习题解答3第三章 化学平衡1、气相反应:2SO 3(g)=2SO 2(g)+O 2(g)在1000K 时的平衡常数θc K =3.54×103,求该反应的θK (1000K)和θx K (1000K)。
解:第一问能做,第二问不能做(不知道系统总压)。
解答略。
2、氧化钴(CoO)能被氢或CO 还原为Co ,在721℃、101325Pa 时,以H 2还原,测得平衡气相中H 2的体积分数2H φ=0.025;以CO 还原,测得平衡气相中CO 的体积分数2H φ=0.0192。
求此温度下反应CO(g)+H 2O(g)=CO 2(g)+H 2(g) 的平衡常数θK 。
解:CoO(s) + H 2(g) = Co(s) + H 2O (1)0.025θp (1-0.025) θp390.025025.0-11==θK CoO(s) + CO(g) = Co(s) + CO 2 (2)0.0192θp (1-0.0192) θp510.01920192.0-12==θK (2)-(1)= CO(g)+H 2O(g)=CO 2(g)+H 2(g) ,所以θθθ123/K K K ==51/39=1.313、计算加热纯Ag 2O 开始分解的温度和分解温度。
(1)在101325Pa 的纯氧中;(2)在101325Pa 且2O φ=0.21的空气中。
已知反应2Ag 2O(s)=4Ag(s)+O 2(g)的)(T G m r θ∆=(58576-122T/K)J ·mol -1。
解:分解温度即标态下分解的温度。
令)(T G m r θ∆=(58576-122T/K)<0,得T >480K 开始分解温度即非标态下分解的温度。
令)(T G m r ∆=(58576-122T/K)+8.314×Tln0.21<0,得T >434K4、已知Ag 2O 及ZnO 在温度1000K 时的分解压分别为240及15.7kPa 。
物化第三章课后习题答案
《物化第三章课后习题答案》
物化是一门关于物质和能量变化的科学,它涉及到化学和物理两个领域。
在学习物化的过程中,课后习题是非常重要的一部分,它能够帮助我们巩固所学的知识,并且检验我们对知识的掌握程度。
下面我将针对物化第三章课后习题的答案进行解析和讨论。
1. 问题:化学方程式中的反应物和生成物有什么作用?
答案:化学方程式中的反应物是参与化学反应的原始物质,生成物是化学反应后形成的新物质。
它们的作用是描述化学反应的过程和结果,帮助我们理解反应中的物质变化。
2. 问题:化学方程式中的平衡系数是什么意思?
答案:化学方程式中的平衡系数是用来平衡反应物和生成物的数量关系的数字,它表示了反应物和生成物之间的摩尔比。
通过平衡系数,我们可以确定反应物和生成物之间的化学计量关系。
3. 问题:化学反应中的能量变化有哪些形式?
答案:化学反应中的能量变化可以表现为放热反应和吸热反应。
放热反应是指在化学反应中释放出能量,使周围温度升高;吸热反应是指在化学反应中吸收能量,使周围温度降低。
4. 问题:化学反应速率受哪些因素影响?
答案:化学反应速率受温度、浓度、催化剂等因素的影响。
温度越高,反应速率越快;浓度越高,反应速率越快;催化剂能够降低反应的活化能,从而加快反应速率。
通过对以上课后习题答案的解析,我们可以更加深入地理解物化第三章的知识点,同时也能够加深对化学反应及其原理的理解。
希望大家在学习物化的过程中能够多多练习课后习题,加深对知识的掌握,提高学习效果。
第三章 化学反应热力学总结本章主要是运用热力学的基本概念、原理和方法研究化学反应的能量变化,引入反应焓与温度的关系式——Kirchhoff 公式,建立热力学第三定律以求算化学反应的熵变,引入化学热力学重要关系式——Gibbs-Helmholtz 方程。
一、 基本概念1、化学反应进度 ()/B B d dn ξξν= B B n /∆ξ=∆ν 或 B B n /ξ=∆ν2、盖斯定律3、标准生成热4、标准燃烧热5、热力学第三定律6、规定熵与标准熵 二、化学反应焓变的计算公式1、恒压反应焓与恒容反应焓的关系 p,m V,m BBQ Q (g)RT =+ν∑或 p ,m V ,mB BH U(g )RT ∆=∆+ν∑ 简写为: m m B BH U (g)RT ∆=∆+ν∑ 2、用f B H ∆$计算r m H ∆$: r m H ∆$(298K)=Bf B BH (298K)ν∆∑$3、由标准燃烧焓c m H ∆!的数据计算任一化学反应的标准反应焓r m H ∆!()r m H 298K ∆=$()B C m,B BH 298K -ν∆∑$4、计算任意温度下的r m H ∆!——基尔霍夫公式(1)微分式 r m B p,m p,m Bp H (T)C (B)C T ⎡⎤∂∆=ν=∆⎢⎥∂⎣⎦∑$(2)已知()r m H 298K ∆$求任意温度下的r m H ∆!当(),p m C B 表示式为形式: ()2,p m C B a bT cT =++ 时()()T2r mr m298K HTK H 298K (a bT cT )dT ∆=∆+∆+∆+∆⎰$$,积分得:()()()()2233r m r m b c H TK H 298K a T 298T 298(T 298)23∆∆∆=∆+∆-+-+-$$若令:230r m b c H H (298k)a 29829829823∆∆∆=∆-∆⨯-⨯-⨯$则: 23r m 0b C H (TK)H aT T T 23∆∆∆=∆+∆++$三、化学反应熵变的计算1、知道某一物质B 在298K 时的标准熵值,求该物质在任一温度时的标准熵值的公式()()(),,,298298TKm Bm Bp m K dT STK S K C B T=+⎰$$ 2、已知(),298m B S K $计算标准反应熵变r m S ∆$(298K)r m B m,B S (298k)S (298K)∆=ν∑$$3、任意温度 TK 时的标准反应熵变值r m S ∆$(TK )的计算r m S ∆$(TK )=r mS ∆$ (298K)+TKp,m 298KC dT T∆⎰式中,p m C ∆ 为产物与反应物的热容差, ,p m C ∆=(),Bp m BC B ν∑四、任意温度下化学反应吉布斯自由能的计算1、微分式 m m 2PG ()H T T T ⎡⎤∆∂⎢⎥∆=-⎢⎥∂⎢⎥⎢⎥⎣⎦$$2、不定积分式 'mm 2G H dT I T T∆∆=-+⎰$$ ('I 为积分常数) (1)、m H ∆$为常数时m mG H I T T∆∆=+$$或 m G ∆$=m H ∆$ +IT (2)、m H ∆$表示为温度的函数,且符合Kirchhoff 定律的形式:23m 0b c H (TK)H aT T T 23∆∆∆=∆+∆++$ 式中0H ∆为积分常数 20mH G 11a ln T bT cT I T T 26∆∆=-∆-∆-∆+$ 即 23m 011G (TK)H aT ln T bT cT IT 26∆=∆-∆-∆-∆+$。