合肥工业大学工程硕士矩阵理论及应用笔记第二章
- 格式:pdf
- 大小:2.47 MB
- 文档页数:4
2011年合工大工程硕士《矩阵理论》考试范围与重要习题1、两个子空间的直和例:设1V 和2V 分别是齐次方程组12...0n x x x +++=和12...n x x x ===的解空间,证明12V V V =⊕。
证明:因方程组12...0n x x x +++=和12...n x x x ===,只有零解,故{}120V V = ,从而21V V +=21V V ⊕,且21V V ⊕是V 的子空间,即21V V ⊕≤V 。
又1V 的维数是n-1,2V 的维数是1故21V V ⊕的维数是n 维,所以12V V V ⊕=。
注:任给一个V 的子空间1V ,可以找到子空间2V 使得:12V V V =⊕此式称为V 的一个直和分解,1V ,2V 称为互补空间2、 线性空间中线性变换的象空间与核例题1:证明:线性空间V 的线性变换T 的象空间和核都是V 的子空间 证明:V (),,,,()()()()()V 0k e r ()k e r (),k e r (),0,()0,k e r ()(),k e r ()k e r ()VT V x y V P x y V x V Tx Ty T x y T V Tx T x T V T V T T x y T P Tx Ty T x y Tx Ty x y T T x Tx x T T λλλλλλλλ∀∈∀∈+∈∈+=+∈=∈∈∀∈∀∈==+=+=+∈=∈因为非空,所以非空故是是的线性子空间因为所以非空因为所以非空则于是故故因此是的线性子空间。
例题2:线性空间V 中的线性变化T 的象空间和核的维数之和等于V 的维数 dim(T(V))+dim(ker(T))=dim(V)证明:设dim(V)=n dim(ker(T))=s 只需证明dim(T(V))=n-s 即可取ker(T)的一组基12s ,,...,x x x 再添加n-s 个向量将这组向量扩充为V 的一组基12s 122,,...,,,,...,,s s s x x x y y y +++112211n n112211n n11n n111...............(){,,...,}s s s s s s s s s s s s s x V x x x x y y Tx Tx Tx Tx Ty Ty Ty Ty T V Span Ty Ty Ty λλλμμλλλμμμμ+++++++++∀∈=++++++=++++++=++=对则现在只需证明12,,...,s s n Ty Ty Ty ++线性无关。
双语国际教育版系统分析的数学工具——工程矩阵理论(适用于数学专业和其它理工科研究生)倪郁东编著合肥工业大学数学学院目录第一章线性空间与线性变换 1 §1.1 线性空间 1§1.2 线性变换及其矩阵 3§1.3 内积空间8§1.4 正交变换及其几何与代数特征§1.5 应用于小波变换的框架理论15 第二章矩阵的标准形理论§2.1 线性变换的特征值和特征向量29 §2.2 矩阵的相似对角化32 §2.3 特征矩阵的Smith标准形34 §2.4 矩阵的Jordan标准形34 §2.5 矩阵的最小多项式第三章矩阵分解29 §3.1 Gauss消去法与矩阵三角分解29 §3.2 矩阵的QR分解32 §3.3 矩阵的满秩分解34 §3.4 矩阵的奇异值分解34 §3.5 矩阵分解的应用第四章矩阵范数理论及其应用16 §4.1 范数与赋范线性空间§4.2 向量范数及其性质17 §4.3 矩阵的范数18 §4.4 范数的应用19 第五章矩阵分析及其应用20 §5.1 矩阵序列20 §5.2 矩阵级数21 §5.3 矩阵函数22 §5.4 矩阵的微分和积分25§5.5 矩阵函数的一些应用26 §5.6 梯度分析和最优化27 第六章特征值估计及极性38 §6.1 特征值的估计38 §6.2 广义特征值问题40 §6.3 对称矩阵特征值的极性41 §6.4 广义特征值分析的应用42 第七章广义逆矩阵43 §7.1 投影矩阵43 §7.2 广义逆矩阵46 §7.3 总体最小二乘方法49 第八章Matlab中的矩阵运算简介50 §8.1 基本矩阵运算50 §8.2 矩阵分解52 §8.3 广义逆矩阵和解线性系统54 参考文献57编著者说明1、体例格式为:知识要点,章节内容,各章习题。
研究生矩阵理论课后答案——黄有度版习题一1.检验以下集合对于所指的线性运算是否构成实数域的线性空间: (1)设A 是n 阶实数矩阵.A 的实系数多项式()f A 的全体,对于矩阵的加法和数乘;(2)平面上不平行于某一向量所组成的集合,对于向量的加法和数与向量的乘法;(3)全体实数的二元数列,对于如下定义的加法⊕和数乘运算:),,(),(),(ac d b c a d c b a +++=⊕)2)1(,(),(2a k k kb ka b a k -+= (4)设R +是一切正实数集合,定义如下加法和数乘运算:,k a b ab k a a ⊕==其中,,a b R k R +∈∈;(5)二阶常系数非齐次线性微分方程的解的集合,对于通常函数的加法和数乘;(6)设{}12sin sin 2sin ,,02k i V x x c t c t c kt c R t π==+++∈≤≤,V 中元素对于通常的加法与数乘,并证明:{}sin ,sin 2,,sin t t kt 是V 的一个基,试确定i c 的方法.● 解 (1)是.● 令{}矩阵为是实系数多项式,n n x f f V ⨯=A A )()(1.由矩阵的加法和数乘运算知,●),()(),()()(A A A A A d kf h g f ==+● 其中k 为实数,)(),(),(x d x h x f 是实系数多项式.1V 中含有A 的零多项式,为1V 的零元素.)(A f 有负元1)(V f ∈-A .由于矩阵加法与数乘运算满足其它各条,故1V 关于矩阵加法与数乘运算构成实数域上的线性空间.● (2)否.例如以那个已知向量为对角线的任意平行四边形的两个邻边向量,它们的和不属于这个集合,因此此集合对向量的加法不封闭.(3)是. 封闭性显然成立.下面证明此集合满足线性空间的八个要求.任取该集合中的三个元素,设为),(),,(),,(g f d c b a ===γβα,以及任意实数l k ,,则有① αββα+=+++=⊕),(ac d b c a ; ② γγβα⊕+++=⊕⊕),()(ac d b c a))()(,)((f c a g ac d b f c a +++++++=))()(),((f c a cf g d b f c a +++++++= )(),(γβαα⊕⊕=+++⊕=cf f d f c ;③存在(0,0),使得),()00,0()0,0(),(b a a b a b a =+++=⊕,即(0,0)为零元;④存在),(2b a a --,使得)0,0())()(,(),(),(22=-+-+-=--⊕a a b a b a a b a a b a ,即),(2b a a --是),(b a 的负元;⑤),()2)11(11,1(),(12b a a b a b a =-+= ⑥)2)1(,()),(()(2a l l lb la k b a l k l k -+== α))(2)1()2)1((),((22la k k a l l lb k la k -+-+=α )(),()()2)1()(,(2kl b a kl a kl kl b kl kla ==-+=;⑦)2)1))((()(,)((),()()(2a l k l kb l k a l k b a l k l k -+++++=+=+ α )))(()2)1(()2)1((,(22la ka a l l lb a k k kb la ka +-++-++=)2)1(,()2)1(,(22a l l lb la a k k kb ka -+⊕-+= αα l k b a l b a k ++=+=),(),(;⑧),()(ac d b c a k k +++=⊕ βα))(2)1()(),((2c a k k ac d b k b a k +-++++= )))(()2)1(()2)1((,(22kc ka c k k kd a k k kb kb ka +-++-++=)2)1(,()2)1(,(22c k k kd kc a k k kb ka -+⊕-+=)()(βα k k ⊕=.(4)是.对任意a ,b ∈R +,有+∈=⊕R ab b a ;又对任意R k ∈和+∈R a ,有+∈=R a a k k ,即R +对所定义的加法与数乘运算封闭。
欢迎来主页下载---精品文档精品文档三、矩阵的若方标准型及分解λ-矩阵及其标准型定理1 λ-矩阵()λA 可逆的充分必要条件是行列式()λA 是非零常数引理2λ-矩阵()λA =()()n m ij ⨯λa 的左上角元素()λ11a 不为0,并且()λA 中至少有一个元素不能被它整除,那么一定可以找到一个与()λA 等价的()()()nm ij ⨯=λλb B 使得()0b 11≠λ且()λ11b 的次数小于()λ11a 的次数。
引理3任何非零的λ-矩阵()λA =()()nm ij⨯λa 等价于对角阵()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...0.....d 21λλλr d d ()()()λλλr 21d ,....d ,d 是首项系数为1的多项式,且()()1......3,2,,1,/d 1-=+r i d i i λλ引理4等价的λ-矩阵有相同的秩和相同的各阶行列式因子推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子 推论6两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子推论7λ-矩阵()λA 可逆,当且仅当它可以表示为初等矩阵的乘积推论8两个()()λλλB A m 与矩阵的-⨯n 等价当且仅当存在一个m 阶的可逆λ-矩阵()λP 和一个n 阶的λ-矩阵()λQ 使得()()()()λλλλQ A P =B精品文档推论9两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩定理10设λ-矩阵()λA 等价于对角型λ-矩阵()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=λλλλn h h .....21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同的按照重复的次数计算)就是()λA 的全部初等因子。
行列式因子不变因子初等因子初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。