全国2018年4月自考复变函数与积分变换考试真题答案及评分标准
- 格式:doc
- 大小:278.50 KB
- 文档页数:7
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
1浙江省2018年4月高等教育自学考试复变函数试题课程代码:10019一、填空题(本大题共8小题,每小题2分,共16分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.复数sin cos 33z i ππ=-的指数形式是__________.2.|z 0|<1,若|z|=1,则00||1z z zz -=-__________. 3.设n n n z x iy =+, 若{x n }的极限为x ,{y n }的极限为y ,则{z n }的极限为__________. 4.12||2sin 22z z dz z z =++⎰=__________. 5.z =0为f (z )=z sin z 的__________阶零点.6.级数1nn z n ∞=∑在z =0处导数为__________.7.把函数1()(1)sin f z z z =+在点z =i 的领域内展成幂级数0()n n n c z i ∞=-∑,则其收敛半径为__________.8.多项式4()51p z z z =-+在单位圆内有__________个零点.二、判断题(本大题共7小题,每小题2分,共14分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。
1.若z 0是f (z )的可去奇点,则0lim ()z z f z →不存在.( ) 2.()ii i i e e =.( ) 3.01lim z z e z→-=0.( ) 4.若u +iv 是区域D 内的解析函数,那么v +iu 也是D 内的解析函数.( )2 5.点集E 的边界E ∂是闭集.( )6.有界整函数必为常数.( )7.若函数w =f (z )在点z 0解析,则f (z )在z 0的一个领域内单叶解析.( )三、完成下列各题(本大题共6小题,每小题5分,共30分)1.若123||||||z z z ==,且1230z z z ++=,证明以123,,z z z 为顶点的三角形是正三角形.2.问是否存在着在原点解析的函数()f z 满足下列条件1()1n f n n =-,n =2,3,4,… 若存在,请写出f (z )的表达式,若不存在,请说明理由.3.求积分2C z dz ⎰的值,其中C 为从0到2πa 的摆线: (sin ),x a θθ=-(1cos )y a θ=-.4.试判断级数11i n n e nπ∞=∑的敛散性,并说明理由.5.已知函数1()1z z f z e z -=++ 若f (z )依z -1的幂展开,则其展式如何?并指明其收敛范围. 6.求函数1()sin sinf z z z =在z =0的留数. 四、(本大题10分) 计算积分20sin dt I a tπ=+⎰,其中常数a>1. 五、(本大题10分) 求出常数m ,l ,n ,使函数3232()()f z my nx y i x lxy =+++为在z 平面上的解析函数,并且求出f (z )的导数f ′(z ).六、(本大题10分) 求出函数111z e z--的奇点,并确定其类别(对于极点,要指出它们的阶),对于无穷远点也要加以讨论.七、(本大题10分)求把圆|z |<2映射到右半平面的分式线性映射,满足条件(0)1w =,arg (0)2w π'=.。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考 料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯全国 2018 年 4 月高等教育自学考试复变函数与积分变换试题课程代码: 02199一、单项选择题 (本大题共 15 小题,每小题 2 分,共 30 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 z=3+4i, ,则 Re z 2=( )A .-7B . 9C . 16D .25 2.下列复数中,使等式1=-z 成立的是 ()zA . z=e 2i B . z=eii3 iD . z= e 4C . z= e 23.设 0<t ≤ 2 , 则下列方程中表示圆周的是 ()A . z=(1+i)tB . z=e it +2iC . z=t+iD . z=2cost+i3sintt4.下列区域为有界单连通区域的是 ()A . 0<|z-i|<1B . 0<Imz<C . |z-3|+|z+3|<123D . 0<argz<45.若 f(z)=u+iv 是复平面上的解析函数,则 f (z)=()A .u iuB .v vxyyix C . ui v D . v ivxxyxA , z 06.设 f(z)=e z 1 z 在整个复平面上解析,则常数A=()z , 0A . 0B . e -1C . 1D . e7.设 f(z)=ax+y+i(bx+y) 是解析函数,则实常数 a,b 为 ()A . a=-1,b=1B . a=1, b=11C. a=-1,b=-1 D . a=1,b=-18.设 z 为复数,则e-iz=()A . cosz+isinzB . sinz+icoszC. cosz-isinz D . sinz-icosz9.设 f(z) 和 g(z)在有向光滑曲线 C 上连续,则下列式子错误的是()..A .g( z)f ( z)dz g( z) f ( z)dzC zB . f (z)dz f (z)dz, 其中 C-为C 的反向曲线C CC.( f ( z) g(z))dz f ( z)dz g(z)dzC C CD .3f (z)dz 3 f (z)dzC C10.设 C 为从 -I 到 I 的左半单位圆周,则| z | dz ( )CA . iB . 2iC. -i D . -2i11.设 C 为正向圆周 |z|=2, 则下列积分值不为 0 的是 ( )..A .z dzB .z3coszdzC z 1 CC.sin z dz D .e z dzC z C z 312.设 D 是单连通区域, C 是 D 内的正向简单闭曲线,则对 D 内的任意解析函数f(z) 恒有( )A . f(z)= 1 f ( ) d , z 在 C 的外部2 i C z1 f ( )d , z 在 C 的内部, n≥ 2B . f (n)(z)=i C ( z) n 12n! f ( )d ,z 在 C 的内部, n≥ 2C. f (n)(z)=i C ( z) n2n! f ( )d ,z在C的内部,n≥2D . f (n)(z)=i C ( z) n 1213.复数列的极限lim e in 是 ( )n nA . 1+iB .C.1D.0214. z=i 是 f(z)= 1 的 ( )( z 2 1) 2A .一阶极点B.二阶极点C.本性奇点D.解析点15.映射 w=2z+z 2在点 z0=1+i 处的伸缩率为 ( )A . 2 5 B.3 5C. 2 2 D. 5 2二、填空题 (本大题共 5 小题,每小题 2 分,共10 分)16. arg(1+i)= .17.设 z=x+iy, 则曲线 |z-1|=1 的直角坐标方程为.18.设 f(z)=ze z, 则f (z) .D ,则 F (z) =19.设函数 f(z) 在单连通区域 D 内解析,且 F(z)= f ( ) d , 其中 z,0 .z120. Res e z, 0 = .三、计算题 (本大题共8 小题,每小题 5 分,共40 分)21.求方程 cosz=5 在复平面上的全部解 .22.讨论函数 w=xy-x+iy 2的可导性,并在可导点处求其导数.23.设C为正向圆周|z-2|=1,计算 I=ze3dz .C (z 2) 324.设 C 为从 0 到 1+2i 的直线段,计算积分I= Rezdz .C25. (1)将函数1在点 z=-1 处展开为泰勒级数;z(2)利用以上结果,将函数f(z)= 1在点 z=-1 处展开为泰勒级数 . z226.求函数 f(z)= 1 的全部孤立奇点 . 若为极点,则指出其阶数 .1) 2 (e z(z 1)27.将函数 f(z)= 1 在圆环域 1<|z|<2 内展开为罗朗级数 .1)(z 2)(ze2 z28.设 f(z)= z5 .(1)计算 Res[f(z),0]3(2) 利用以上结果,计算积分I=f (z)dz , 其中 C 为正向圆周 |z|=1.C四、综合题 (下列 3 小题中, 29 题必做, 30、 31 题中选做一题。
1全国2018年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( ) A.不连续 B.可导 C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( ) A.f (z )=x 2-y 2+i 2xy B.f (z )=x -iy C.f (z )=x +i 2yD.f (z )=2x +iy4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰Cz z d ||=( )A.2πiB.0C.1D.25.设C 为正向圆周|z |=1,则⎰-Cz z z)2(d =( )A.-πiB.0C.πiD.2πi6.设C 为正向圆周|z |=2,则⎰-Ciz i z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i2 7.z =0是3sin z z 的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.zzsin B.2)1(1-z zC.z1eD.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=( ) A.-2 B.-1C.1D.2 10.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.|z -i |=|z -1|的图形是_______________. 12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰Cz 3 d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-Ciz e 2dz=______________. 15.设C 为正向圆周|z|=1,则⎰Cz cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________. 三、计算题(本大题共8小题,共52分) 17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分) 18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)3 20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分)21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分) 23.设C 为正向圆周|z-2|=1,求⎰-Cz z z 2)2(e d z .(7分)24.设C 为正向圆周|z|=1,求⎰Cz1sind z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。
总分: 100分考试时间:分钟填空题1. |z-i|=|z-1|的图形是___(1)___ .(6分)(1).参考答案:线段i到1的垂直平分线判断题2. 若存在,则在处解析。
(6分)正确错误参考答案:错误解题思路:3. 解析函数的虚部是实部的共轭调和函数。
(6分)正确错误参考答案:正确解题思路:4. 若和的偏导数连续,则可导。
(6分)正确错误参考答案:错误解题思路:5. 若是的奇点,则在处不可导。
(6分)正确错误参考答案:错误解题思路:单选题6. (cos+isin)3= 。
(5分)(A) cos(3)+isin(3)(B) cos(C) cos(3)+3isin(3)(D) cos参考答案:A7. 设z=x+iy,则下列函数为解析函数的是。
(6分)(A) f(z)=x2-y2+i2xy(B) f(z)=x-iy(C) f(z)=x+i2y(D) f(z)=2x+iy参考答案:A8. 在复平面上方程|z-1|+|z+1|=4表示。
(5分)(A) 直线(B) 圆周(C) 椭圆周(D) 抛物线参考答案:C9. 设,则的零点个数为。
(5分)(A) 0(B) 1(C) 2(D) 3参考答案:C10. 关于函数,以下哪个说法是错误的。
(5分)(A) 它是有界函数(B) 它是周期函数(C) 它仅有实零点(D) 它是解析函数参考答案:A11. 。
(6分)(A)(B)(C)(D)参考答案:C12. arg。
(5分)(A) -(B) -+2,(k=0,±1,±2)(C)(D) +2,(k=0,±1,±2)参考答案:C13. ln(-4-3i)= 。
(6分)(A) ln5+i(-π+arctg)(B) ln5+i(π+arctg)(C) ln5+i(-π+arctg)(D) ln5+i(π+arctg)参考答案:A14. 2sini= 。
(5分)(A)(B)(C)(D)参考答案:C15. arg(-1+)= 。
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。
A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。
2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。
A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。
A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。
A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。
A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。
A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。
A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。
20XX年(上)高等教育自学考试全国统一命题考试复变函数与积分变换试卷及答案详解第一部分选择题一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设z=1+2i,则Imz3= ( )A.-2 B.1C.8 D.142.z=(1+cost)+i(2+sint),0≤t<2-n所表示的曲线为( )A.直线B.双曲线C.抛物线D.圆3. In(-1)为( )A.无定义的B.0C.πi D.(2k +1)πi(k为整数)4.设z=z+iy,则(1+i)z2的实部为( )A.x2-y2+2xy B.x2-y2-2xyC.x2+y2+2xy D.x2+y2-2xy5.设z=z+iy,解析函数f(z)的虚部为v=y3-3x2y,则f(z)的实部u可取为( )A.x3-3xy2B.3xy2-x3C.3x2y-y3D.3y3-3x36.设C为正向圆周|z|=1,A. OB. 1C. πiD. 2πi7.设C为从-i到i的直线段,A. iB. 2iC. -iD. -2i8.设C为正向圆周|z|=1,A.2πi·sinl B.-2πiC.0 D.2πi9.A.-1 B.0C.1 D.不存在10.以z=0为本性奇点的函数是A.sinz/z B.1/[z(z-1)]C.(1-cosz)/z2D.sin(1/z)11.f(z)=1/e z-1在z=πi处的泰勒级数的收敛半径为A.πi B.2πiC.πD.2π12.A.OB. 1/10!C. 1D. 10!13.设函数,则Res[f(z),-i]=A.0 B.-ie/4C.ie/4 D.e/414.把点z=l,i,-1分别映射为点w=∞,-1,0的分式线性映射为A.w=(z-1)/(z+1) B.w=i(z+1)/(1-z)C.w=(z+1)/(1-z) D.w=i(z-1)/(z+1)15.w=e z把带形区域0<Imz<2π映射成形平面上的A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面第二部分非选择题二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
得分得分«复变函数与积分变换»期末试题(A )题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( );3.211)(z z f +=,=)0()5(f ( );4.0=z 是 4sin z zz -的( )极点;5. zz f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a得分(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1得分五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos得分得分«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3.211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是 4sin z zz -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分)1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。
2.-8i 的三个单根分别为: . . 。
3.Ln z 在的区域内连续。
4. f ( z ) = z 的解极域为: 。
5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是: 。
9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。
10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。
、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。
五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。
1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。
+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。
八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。
复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。
定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。
(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。
(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。
(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。
(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。
(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。
(3分) 二、验证计算题(共16分)。
1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。
(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。
由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。
(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。
全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
全国2018年4月高等教育自学考试高等数学基础试题课程代码:00417 第一部分 选择题一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1. 在空间直角坐标系中,点A (-1,2,4)关于xy 面的对称点A 1的坐标是( ) A.(1,-2,4) B.(1,-2,-4) C.(-1,2,-4) D.(1,2,4) 2. 与向量{-1,1,1}共线的向量是( ) A.{2,1,1} B.{2,-2,-2} C.{2,-1,-1} D.{1,1,1} 3. 已知三点A (-1,2,3),B (1,2,1),C (0,1,4),则∠BAC 是( ) A.直角 B.锐角 C.钝角 D.平角4. 空间直角坐标轴上的单位向量k ,j ,i有性质( )A.1i k ,1k j ,1j i • • •B. 0i k ,0k j ,0j i • • •C. j i k ,i k j ,k j i• • •D.上述三个选项均错5. 对于任意向量c ,b ,a,下列诸等式中成立的是( )A.(b b b a 2a a )b a ()b aB.(22b b a 2a )b a ()b a• •C.(b b a a )b a ()b aD.)c b (a c )b a (• •6.平面4y-7z=0的位置特点是( ) A.通过z 轴 B.通过y 轴C.通过x 轴且通过点(0,7,4)D.平行于yz 面7.经过A (2,3,1)而平行于yz 面的平面的平面方程是( ) A.x=2 B.y=3 C.z=1 D.x+y+z-6=08.函数f(x)=0x ,x 0x ,x 12 的定义域是( )A.(-∞,0)B.(-∞,+ ∞)C.[0,+∞]D.(-∞,0)∪(0,+∞)9.下列各对函数中,相同的是( ) A.y=x 与y=2x B.y=lnx1与y=lnx C.y=1x 1x 2 与y=x+1 D.y=cosx 与u=cosv10.在(-∞,+∞)内,f(x)=2x1x1 是( ) A.奇函数 B.偶函数 C.有界函数 D.单调函数 11.下列命题正确的是( )A.因为数列{a n }有界,所以数列{a n }有极限B. 因为数列{a n }单增,所以数列{a n }无极限C. 因为数列{a n }单减,所以数列{a n }有极限D. 因为数列{a n }单增有上界,所以数列{a n }有极限 12.下列极限中,正确的是( )A.e )x 1(x1x limB.e )x 1(x10x limC.e )n11(2n limD.e )x11(x 2x lim13.x=0是函数f(x)=sinx1的( ) A.可去间断点 B.第一类间断点 C.第二类间断点 D. 连续点14.函数f(x)在x=x 0连续是其在该点可导的( )A.充分条件B.必要条件C.充分必要条件D.无关条件 15.函数f(x)=|x|在区间[-1,1]上不满足罗尔定理条件是因为( ) A.在x=0无定义 B.在[-1,1]上不连续 C.在(-1,1)内不可导 D.f(1)=f(-1)16.函数y=x 2+x 在区间[0,1]上应用拉格朗日中值定理,则中值定理中的ξ=( )A. 1B.21C.2D. 25 17.直线x=0是f(x)的水平渐近线,则f(x)是下列函数中的( )A.x11B.2x eC.lnxD.sinx 18.设,C x sin dx )x (f 则 )x (f ( )A.cosxB.sinxC.-cosxD.-sinx 19.设)x (Ad dx x1,则A=( )A.1B.21C.2D.0 20.设 ,C )x (F dx )x (f 则dx )b ax (f ( )A.F(ax+b)+cB.a1F(ax+b)+C C.aF(x)+C D.aF(ax+b)+C21.定积分1xu dx e满足( )A.0<u<1B.1<u<eC.-1<u<0D.2<u<e 22.21212dx x11( )A.0B.6 C. 3 D. 223.0k312k 的充分必要条件为( )A.k ≠1或k ≠-3B.k ≠1且k ≠-3C.k ≠1D.k ≠-3 24.下列排列中,齐排列是( )A.3214B.4321C.1234D.3412 25.四阶行列式|a ij |所表示的代数和中共有( ) A.1项 B.4项 C.16项 D. 24项 26.n 阶矩阵A 非奇异是矩阵A 可逆的( ) A.充分条件 B.必要条件 C.既非充分又非必要条件 D.充分必要条件 27.下列矩阵中,零矩阵是( )A. 0001B. 000000C. 2101D.1001 28.矩阵910054324321的一个3阶子式是( )A.1B.9143 C.0032 D.91054343229.A ,B 为n 阶矩阵,若(A+B )(A-B )≠A 2-B 2,则必有( ) A.A=I B.A=-B C.A=B D.AB ≠BA 30.下列矩阵中,秩为3的是( )A.3021 B.000531020 C.900005002310 D.3000010000200001第二部分 非选择题二、填空题(本大题共10小题,每小题1分,共10分)31.若向量}z ,y ,x {b },z ,y ,x {a 222111 ,则b 2a=__________.32.已知点A (3,-1,2),B (1,1,1),则A ,B 两点间的距离为_______. 33.平面3x+2y+4z-6=0的截距式方程为_________. 34.函数y=lg(x-1)的反函数是__________.35.设函数f(x)= 0x ,a 0x ,xx sin ,要使f(x)在x=0点连续,则a=_________.36.曲线y=tgx 在点(π,0)处的切线方程是________. 37.dx x3x1________. 38.若函数G (x )=x22,dt t 1则G (x )=_________.39.行列式321中元素3的代数余子式为________.40.若矩阵A=283726 ,则A T =_________.三、计算题(一)(本大题共4小题,每小题4分,共16分) 41.求球面x 2+y 2+z 2-2x+4y+2z-3=0的球心坐标及半径. 42.已知函数y=2sinx+xcosx+tg10,求dy. 43.求极限2xx x tdt sin lim.44.用初等变换解线性方程组.2x 3x ,2x x ,6x 3x 2x 2132321 四、计算题(二)(本大题共4小题,每小题7分,共28分)45.试求过点P (1,1,1)且与二已知向量a={2,0,3}和b ={-1,1,1}平行的平面方程. 46.设y=xarctgx,求0x y47.计算.dx ex48.计算行列式1011201112123250 .五、解答题(本大题共2小题,每小题8分,共16分) 49.设函数y=x-ln(2+x).(1) 求函数y 的增减区间和极值;(2) 证明函数在(-2,∞)内是下凸的.50.平面图形由曲线y=x 2,x=y 2围成,求该图形绕x 轴旋转形成的旋转体的体积.。
«复变函数与积分变换»期末试题〔A〕一.填空题〔每题3分,共计15分〕1.231i-的幅角是〔〕;2.)1(iLn+-的主值是〔〕;3.211)(zzf+=,=)0()5(f〔〕;4.0=z是4sinzzz-的〔〕极点;5.zzf1)(=,=∞]),([Re zf s〔〕;二.选择题〔每题3分,共计15分〕1.解析函数),(),()(yxivyxuzf+=的导函数为〔〕;〔A〕yxiuuzf+=')(;〔B〕yxiuuzf-=')(;〔C〕yxivuzf+=')(;〔D〕xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf〔〕,那么0d)(=⎰C zzf.〔A〕23-z;〔B〕2)1(3--zz;〔C〕2)2()1(3--zz;〔D〕2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,那么级数在〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 〕.(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成以下各题〔每题10分,共计40分〕〔1〕设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a〔2〕.计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;〔3〕计算⎰=++3342215d )2()1(z z z z z〔4〕函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩大复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、〔此题14分〕将函数)1(1)(2-=z z z f 在以下区域展开成罗朗级数; 〔1〕110<-<z ,〔2〕10<<z ,〔3〕∞<<z 1五.〔此题10分〕用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、〔此题6分〕求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题〔A 〕答案及评分标准一.填空题〔每题3分,共计15分〕1.231i -的幅角是〔 2,1,0,23±±=+-k k ππ〕;2.)1(i Ln +-的主值是〔 i 432ln 21π+ 〕; 3.211)(z z f +=,=)0()5(f 〔 0 〕,4.0=z 是4sin z zz -的〔 一级 〕极点;5. zz f 1)(=,=∞]),([Re z f s 〔-1 〕; 二.选择题〔每题4分,共24分〕1.解析函数),(),()(y x iv y x u z f +=的导函数为〔B 〕;〔A 〕 y x iu u z f +=')(; 〔B 〕y x iu u z f -=')(;〔C 〕y x iv u z f +=')(; 〔D 〕x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f 〔 D 〕,那么0d )(=⎰Cz z f .〔A 〕23-z ; 〔B 〕2)1(3--z z ; 〔C 〕2)2()1(3--z z ; 〔D 〕2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,那么级数在〔C 〕〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( B )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 D 〕.的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成以下各题〔每题10分,共40分〕〔1〕.设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
1全国2018年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设z=3+4i,,则Re z 2=( ) A .-7B .9C .16D .252.下列复数中,使等式z1=-z 成立的是( ) A .z=e 2πiB .z=e πiC .z=i2e π-D .z=i43e π3.设0<t ≤2π,则下列方程中表示圆周的是( ) A .z=(1+i)tB .z=e it +2iC .z=t+tiD .z=2cost+i3sint4.下列区域为有界单连通区域的是( ) A .0<|z-i|<1B .0<Imz<πC .|z-3|+|z+3|<12D .0<argz<43π5.若f(z)=u+iv 是复平面上的解析函数,则f '(z)=( )A .y u i x u ∂∂+∂∂B .x v iy v ∂∂+∂∂ C .xv i x u ∂∂-∂∂ D .xviy v ∂∂-∂∂ 6.设f(z)=⎪⎩⎪⎨⎧≠=-0z ,ze 0z ,A 1z 在整个复平面上解析,则常数A=( )A .0B .e -1C .1D .e7.设f(z)=ax+y+i(bx+y)是解析函数,则实常数a,b 为( ) A .a=-1,b=1B .a=1, b=12C .a=-1,b=-1D .a=1,b=-18.设z 为复数,则e -iz =( ) A .cosz+isinzB .sinz+icoszC .cosz-isinzD .sinz-icosz 9.设f(z)和g(z)在有向光滑曲线C 上连续,则下列式子错误..的是( ) A .⎰⎰=zCdz )z (f )z (g dz )z (f )z (gB .⎰⎰--=CC ,dz )z (f dz )z (f 其中C -为C 的反向曲线C .⎰⎰⎰±=±CCCdz )z (g dz )z (f dz ))z (g )z (f (D .⎰⎰=CCdz )z (f 3dz )z (f 310.设C 为从-I 到I 的左半单位圆周,则⎰=Cdz |z |( )A .iB .2iC .-iD .-2i 11. 设C 为正向圆周|z|=2, 则下列积分值不为..0的是( ) A .⎰-C dz 1z zB .⎰C 3zdz cos zC .⎰C dz zz sinD .⎰-C zdz 3z e12.设D 是单连通区域,C 是D 内的正向简单闭曲线,则对D 内的任意解析函数f(z)恒有( )A .f(z)=⎰ζ-ζζπC d z )(f i 21, z 在C 的外部B .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 21,z 在C 的内部,n ≥2C .f (n)(z)=⎰ζ-ζζπC nd )z ()(f i 2!n ,z 在C 的内部,n ≥2D .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i2!n ,z 在C 的内部,n ≥213.复数列的极限ne lim inn ∞→是( )A .1+iB .∞C .1D .0314.z=i 是f(z)=22)1z (1+的( ) A .一阶极点 B .二阶极点 C .本性奇点D .解析点15.映射w=2z+z 2在点z 0=1+i 处的伸缩率为( ) A .25 B .35 C .22D .52二、填空题(本大题共5小题,每小题2分,共10分) 16.arg(1+i)= .17.设z=x+iy, 则曲线|z-1|=1的直角坐标方程为 . 18.设f(z)=ze z , 则=')z (f .19.设函数f(z)在单连通区域D 内解析,且F(z)=⎰ζζ0z d )(f , 其中z,0D ∈, 则)z (F '= .20.Res ⎥⎥⎦⎤⎢⎢⎣⎡0,e z 1= .三、计算题(本大题共8小题,每小题5分,共40分) 21.求方程cosz=5在复平面上的全部解.22.讨论函数w=xy-x+iy 2的可导性,并在可导点处求其导数.23.设C为正向圆周|z-2|=1,计算I=⎰-C 33dz )2z (ze . 24.设C 为从0到1+2i 的直线段,计算积分I=⎰Czdz Re .25.(1)将函数z1在点z=-1处展开为泰勒级数; (2)利用以上结果,将函数f(z)=2z1在点z=-1处展开为泰勒级数.26.求函数f(z)=)1e ()1z (1z 2--的全部孤立奇点. 若为极点,则指出其阶数.27.将函数f(z)=)2z )(1z (1--在圆环域1<|z|<2内展开为罗朗级数.28.设f(z)=5z2ze .(1)计算Res[f(z),0]4(2)利用以上结果,计算积分I=⎰Cdz )z (f , 其中C 为正向圆周|z|=1.四、综合题(下列3小题中,29题必做,30、31题中选做一题。