当前位置:文档之家› 二重极限的计算方法(学年论文)

二重极限的计算方法(学年论文)

二重极限的计算方法(学年论文)
二重极限的计算方法(学年论文)

二重极限的计算方法小结

内容摘要

本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤。及二重极限不存在的几种证明方法。

关键词:二重极限变量代换等不存在的证明

目录

序言 (1)

一、利用特殊路径猜得极限值再加以验证 (1)

(一)利用特殊路径猜得极限值再加以确定 (1)

(二)由累次极限猜想极限值再加以验证 (2)

(三)采用对数法求极限 (2)

(四)利用一元函数中重要的极限的推广求两个重要极限 (3)

(五)等价无穷小代换 (3)

(六)利用无穷小量与有界函数的积仍为无穷小量 (4)

(七)多元函数收敛判别方法 (4)

(八)变量代换将二重极限化为一元函数中的已知极限 (5)

(九)极坐标代换法 (6)

(十)用多元函数收敛判别的方法 (7)

二、证明二重极限不存在的几种方法 (7)

总结 (10)

参考文献 (11)

序言

二元函数的极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。对一元函数而言,自变量的变化只有左右两种方式,而二元函数可以有无数种沿曲线趋于某店的方式,这是两者最大的区别。虽然二元函数的极限较为复杂,但若能在理解好概念,掌握解题方法和技巧就不难解决。

对于二元函数的二重极限,重点是极限的存在性及其求解方法。二重极限实质上是包含任意方向的逼近过程,是一个较为复杂的极限,只要有两个方向的极限不相等,就能确定二重极限不存在,但要确定二重极限存在则需要判定沿任意方向的极限都存在且相等。由于二重极限较为复杂,判定极限的存在及其求解,往往因题而异,依据变量),(y x 的不同变化趋势和函数),(y x f 的不同类型,探索得出一些计算方法,采用恰当的求解方法后,对复杂的二重极限计算,就能简便,快捷地获得结果,本文将对二重极限的几种计算方法做一下小结。

一、二重极限的计算方法小结

(一) 利用特殊路径猜得极限值再加以验证

利用二元函数极限定义求极限:根据定义解题时只需找出δ来。

例1[1]

讨论2

23),(y x y

x y x f +=,在点的极限。

解 令mx y =

01lim )1(lim lim

2

2

02402230=+=+=+→→→→→m m x m mx y x y x x mx y x mx

y x

应为此路径为特殊路径,故不能说明.0lim 2

2300=+→→y x y

x y x 可以猜测值为0。

下面再利用定义法证明:0>?ε,取εδ2=

当δ<-+-<

22)0()0(0y x 有ε2222<+≤y x x

由于232232120x xy y x y x y x =≤-+ 即有ε<≤+2

2

2321x y

x y x 故.0lim 2

2300=+→→y x y

x y x 注意 (1)ε的任意性

(2)δ一般随而变化

(3)若函数以A 为极限,则对函数在的某去心邻域内有范围(A+ε,A-ε)。

(二) 由累次极限猜想极限值再加以验证

先求出一个累次极限,该类此极限是否为二重极限在用定义验证 例2

[2]

设)0(1

sin

)(),(22222

2≠+++=y x y

x y x y x f 。求),(lim 00y x f y x →→ 解 0),(lim lim 0

0=→→y x f y x 可以猜测有极限值为0. 事实上对任意的)0,0(),(≠y x

有22222

22

21sin

)(0),(y x y x y

x y x y x f +≤+≤++=-, 0>?ε 取2

εδ=

, 当δ

就有ε<-++01

sin

)(2222y

x y x ,即有0),(lim 00=→→y x f y x (三) 采用对数法求极限

利用初等变形,特别是指数形式常常可以先求起对数的极限。或极限是等未定型,往往通过取对数的办法求得结果。

例3 求xy

y x xy sin 100)

1(lim ++

+→→

xy

xy

xy y x xy

xy

y x xy

y x xy e

xy e xy 1sin 001sin 100sin 100)1ln(lim )1ln(lim )

1(lim

+=

+=

++

++

++

+→→→→→→

因为

1sin lim

00=+

+→→xy

xy y x 而且1ln )1ln(lim

1

00==+++→→e xy xy

y x 所以

e xy xy

y x =++

+→→sin 1

0)1(lim

(四) 利用一元函数中重要极限的推广求两个重要极限

e x x x x x

x =+=???

??+→∞→1

)1(lim 11lim 1sin lim

0=→x

x

x 类似于一元函数,我们可以充分利用所熟知的结论。通过构造变形我们能够化不熟悉为熟悉,进而利用已有的结论而求之

例4

[3]

求(1))

(1

0)

1(lim y x x y x x +→→+ (2)x

xy

a y x sin lim

0→→

解 (1)因为

e x x

x =+→1

)1(lim ,2

1

1lim

20=+→→y x y x

所以

2

111

2

0)

(12

0)1(lim )

1(lim e x x y

x x

y x y x x y x =??

?

???+=++→→+→→

(2) 由于

0,sin sin ≠?=y y xy

xy

x xy , 又因为

)0,(1sin sin lim

00≠===→→→x t xy t t

lin xy xy t a y x

所以

a y lin t t

lin x xy a y t a y x ==→→→→sin sin lim

00

(五) 等价无穷小代换

利用一元函数中已有的结论对式子进行必要的代换以达到简化的目的,进而求出所要求的极限

例5 求y

x y x y x ++→→)sin(lim 3

300

解 因为,0,0→→y x 故有03

3→+y x

所以)sin(33y x +等价于33y x +

故原式为0)(lim lim )sin(lim 22003

3003300=++=++=++→→→→→→y xy x y

x y x y x y x y x y x y x

注 无穷小替代求极限时要理解替换过程的本质,不可随意替换。利用等价无穷小替代求极限其实质就是在极限运算中同时乘一个或是除一个等价无穷小,也就是我们通常所说的“乘除时可以替换,加减时不可随意替换”

(六) 利用无穷小量与有界函数的积仍为无穷小量

充分利用无穷小的性质,与一元函数类似,在求极限过程中,以零为极限的量称为无穷小量,有关无穷小量的运算性质也可以推广到多元函数中。

例6

[4]

求 ()()()()2

22

2,32323lim -+---→→y x y x y x

解 因为

()()()()()()()()()32323lim

2323lim

2

22,32

22

2,3--+---=-+---→→→→x y x y x y x y x y x y x

()()()()2

1

23232

2≤

-+---y x y x 为有界变量 又 ()03lim

2

,3=-→→x y x 故有 原式=0

(七) 多元函数收敛判别方法

当一个二重极限不易直接求出时,可以考虑通过放缩法使二元函数夹在两个已知极限的函数之间,且两端的极限值相等,则原函数的极限值存在且等于它们的公共值。

例7

[5]

求 ()

y

x y x

y x ++→→2

2

0lim

解 因为

()

y x y

y x x y x y y x x y x y x +=+<+++=++≤

2

22222

()0lim

0→+→→y x y x ,故

()

y

x y x

y x ++→→2

2

0lim

(八) 变量代换将二重极限化为一元函数中的已知极限

有时为了将所求的极限化简,转化为已知的极限,可以根据极限式子的特点,适当引入新变量,以替换原有的变量,使原来较复杂的极限过程转化为更简化的极限过程。

1、讨论当0,0→→y x ,二元函数),(y x f 的极限,利用变量代换把二重极限化为一元函数中已知的极限转化,相应有0→t 从而求得结果。

例8 求 22220,0)

1ln(lim y

x y x y x +++→→ 解 令,22μ=+y x 则当0,0→→y x 时 0→μ,

于是1)1ln(lim )1ln(lim 0222

20,0=+=+++→→→μμμy

x y x y x 2、讨论当()

常数0,≠→∞→a a y x 时,二元函数),(y x f 的极限,作变量代换,相应有∞→t ,利用已知一元函数的极限公式。

例9 求 y

x x a y x xy +→∞→???

?

??+2

11lim 其中0≠a

解 因为

xy

y

y x x

y

x x xy xy )(11112

++???

? ??+=???

? ??+

当 a y x →∞→,时,令xy=t,相应有∞→t 则

e t xy t

t xy

a y x =??

?

??+=???

?

??+∞

→→∞→11lim 11lim

所以

a

xy

y y x x a

y x y

x x a y x e

e

xy xy

1

)

11ln()(lim 11lim 2

==

???

? ??+

++→∞→+→∞→

3、讨论∞→∞→y x ,时二元函数),(y x f 的极限

例10 求 )(22,)(lim y x y x e y x +-∞

→∞→+

解 因为

)

()(2)(22)

(222)()()(y x y x y x y x e

xy e y x e y x e

y x ++++--+=+=+ 当 ∞→∞→y x ,时,令x+y=t,相应有∞→t

则 0lim )(lim 2

)(2,==+∞→+∞→∞→t t y x y x e

t e y x

0lim lim 22

lim ,,,=?=?∞→∞→∞→∞→∞

→∞→y y x x y x y x y x e

y

e x e y e x 所以

0)(lim )(22,=++-∞

→∞→y x y x e y x

(九) 极坐标代换法

讨论当()()0,0,→y x 时,二元函数),(y x f 的极限,必要时可以用极坐标变换

θθsin ,cos r y r x ==,即将求),(y x f 当极限问题变换为)sin ,cos (θθr r f 求+

→0r 的极

限问题。但必须要求在+

→0r 的过程中与θ的取值无关。注意这里不仅对任何固定的θ在

+→0r 时的极限与θ无关,而且要求在+→0r 过程中θ可以随r 的改变而取不同的值的情

况下仍然无关,才能说明),(lim

,0y x f y x →→存在。

例11[6]

求2

22

2)0,0(),(lim y x y x y x +→

解 令

??

?==θ

θsin cos r y r x ,当)0,0(),(→y x 时,有+→0r 令

θθθ

θ2222

2242222sin cos sin cos r r

r x x y x ==+ 因为 1sin cos 2

2≤θθ

所以

0sin cos lim lim 2

2202222)0,0(),(==++

→→θr y x y x r y x

(十) 用多元函数收敛判别的方法

通过缩放法使二元函数夹在两个已知极限的函数之间,再利用两边夹定理来推出结果。

例12 求 y

x y x y x ++→→2

200lim

解 因为

()y x y

x y x y x y x +=++≤++≤2

220 而 ()0lim

0=+→→y x y x

所以 0lim 2

200=++→→y

x y x y x

二、 证明二重极限不存在

若二元函数)(p f 在区域D 有定义,),(000y x p 是D 的聚点。当动点),(y x p 沿着两条不同的曲线(或点列)诬陷趋近于点),(000y x p ,二元函数)(p f ,有不同的“极限”,则二元函数)(p f 在点),(000y x p 不存在极限。依此可以有下面几种方法来证明)(p f 在区域D 上当

0p p →时极限不存在。

例1

[7]

证明

2

2

0)

ln(lim

y

x

e x y y x ++→→不存在

证明 函数的定义域为{}

0,),(2

2≠+->=y x e x y x D y ,当点),(y x p 沿着y

轴趋于点(0,0)时,有x=0,而

y

y

y x e x y y y x 0

2

20

0lim

)ln(lim

→→→=++不存在, 所以

2

2

0)ln(lim

y

x e x y y x ++→→

当P 沿着D 中某一连续曲线趋近于点),(000y x p 时,二元函数)(p f 的极限不存在,则

),(lim )

,(,(00y x f y x y x →不存在

例2 证明

y

x y x y x ++→→4

40

0lim

不存在

证明 函数的定义域为{}

0),(≠+=y x y x D ,当点),(y x p 沿着x 轴趋于点(0,

0)时,y x y x y x ++→→4

400lim =0,当点),(y x p 沿着)1(3-=x x y 趋于点(0,0)时

2)

1(lim lim 43440440=-+=++→→x

x x x y x y x x x 所以

y

x y x y x ++→→4

40

0lim

不存在

当P 沿着D 中两条不同的连续曲线趋近于),(000y x p 时,二元函数)(p f 的极限都存在,但不相等,则

),(lim )

,(,(00y x f y x y x →不存在。

例3 证明

3

32

20

0lim

y

x y x y x +→→不存在 证明 设θθsin ,cos r y r x ==函数的定义域为

[]{}

πθθθ2,0,0sin cos ,0),(3

3≠+>=r r D

θ

θθθθ332203

32

20

0sin cos sin cos lim

lim

),(+=

++

∈→

→→r y x y x D

r x

y x 当0=θ时,0sin =θ得0sin cos sin cos lim 3322),(0=+∈→+θθθθθr D

r x 当-→)43(

πθ时4

1

sin cos ,0sin cos 2233→

→++θθθθ 令r =+θθ3

3

sin cos 有

04

1

sin cos sin cos lim

3322sin cos 033≠=+=+→+

θθθθθθr r

x

所以

3

32

20

0lim

y x y x y x +→→ 不存在

对于一些难以找到的路线,可以利用极坐标来证明 例4

[8]

证明 2

22

20

02lim

y

x y x y x ++→→不存在 证明 0lim lim 2lim lim ),(lim lim 023

02

2220000===++=→→→→→→x x x y x y x y x f x x y x y x

2

121lim 2lim 2lim lim ),(lim lim 022*********===++=→→→→→→y y y x y x y y y x y x y x f

即得

22

2

20022220

02lim lim 2lim

y

x y x y x y x y x y x ++≠++→→→→ 因为两个累次极限不想等,所以

2

22

20

02lim

y

x y x y x ++→→ 不存在 总结

函数极限是数学分析中非常重要的内容,也是比较难理解和掌握的部分,特别是二元函数的极限,但二元函数在多元函数微积分学中有着举足轻重的作用,探讨其存在性与求法是进一步学习多元函数微积分有关概念和方法的基础。文中列出了利用特殊路径猜得极限值再加以确定、由累次极限猜想极限值再加以验证、采用对数法求极限、利用一元函数中重要的极限的推广求两个重要极限、等价无穷小代换、利用无穷小量与有界函数的积仍为无穷小量、多元函数收敛判别方法、变量代换将二重极限化为一元函数中的已知极限、极坐标代换法、用多元函数收敛判别的方法等始终二重极限的计算方法及四种二重极限不存在的证明方法。在实际解决二重极限问题时要根据题型不同选择最优的解题方式,不但能提高正确率也可以节省时间和工作量,达到事半功倍的效果。

参考文献

[1]孙涛.数学分析经典习题解析[M].北京:高等教育出版社,2004.

[2]张贵文,汪明凡.关于多元函数的极限[J].数学学习,1983.

[3]华东师范大学数学系.数学分析.下册(第三版)[M].北京:高等教育出版社,2001. [4]同济大学应用数学系.高等数学(下册)(五版)[M].北京:高等教育出版社,2002.

[5]阎家灏.正项级数敛散性的一种审敛[J].兰州工业高等专科学校学报,2004.

[6]阎家灏.用极坐标变换确定二重极限的技巧及实例[J].兰州工业高等专科学校学报,2006.

[7]刘玉琏,傅沛仁.数学分析讲义(第三版)[M]. 北京:高等教育出版社,1992.

[8]张雅平.二重极限的几种求法[J].雁北师范学院学报(自然科学版),2005,(2).

.

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

考研数学极限计算方法:利用单侧极限

https://www.doczj.com/doc/2310429039.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.doczj.com/doc/2310429039.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1 设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥,所以可知数列n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A = 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

求极限的方法和例题总结

8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→解:原式 11)32(1)31 (lim 3 =++-= ∞→n n n n 上下同除以 。

3.两个重要极限 (1) 1 sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 例如:133sin lim 0=→x x x ,e x x x =--→210 ) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 利用两个重要极限求极限 例5 2 03cos 1lim x x x -→解:原式= 61 )2(122sin 2lim 32sin 2lim 2 2 02 2 0=?=→→x x x x x x 。 注:本题也可以用洛比达法则。 例 6 x x x 2 ) sin 31(lim -→=6 sin 6sin 31 sin 6sin 310 ] ) sin 31[(lim ) sin 31(lim ---→-? -→=-=-e x x x x x x x x x x 例7 n n n n )12(lim +-∞→= 31 331 1 331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+ e n n n n n n n n n n 。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0 x x →时的无穷小,且)(x f ~ )(1x f ,)(x g ~)(1x g ,则当 ) () (lim 110 x g x f x x →存在时, )() (lim x g x f x x →也存在且等于 ) (x f ) ()(lim 110 x g x f x x →,即 )() (lim x g x f x x →=)()(lim 11 0x g x f x x →。

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

相关主题
文本预览