第十章卡方检验
- 格式:ppt
- 大小:759.00 KB
- 文档页数:37
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
第十章 交互分类与2χ检验练习题:1. 为了研究婆媳分居对于婆媳关系的影响,在某地随机抽取了180个家庭,调查结果如下表所示:(1) 计算变量X 与Y 的边际和(即边缘和)X F 和Y F 并填入上表。
(2) 请根据表10-26的数据完成下面的联合分布的交互分类表。
表10-27(3) 根据表10-27指出关于X 的边缘分布和关于Y 的边缘分布。
(4) 根据表10-27指出关于X 的条件分布和关于Y 的条件分布。
解:(1)Y F (从上到下):50;30;100.X F (从左到右):115;65.(2)P 11=15/180;P 21=35/180;1Y F N =50/180;P 12=20/180;P 22=10/180;2Y F N =30/180;P 13=80/180;P 23=20/180;3Y F N =100/180;1X F N =115/180;2X F N =65/180.(3)关于X 的边缘分布:x 分居 不分居 P(x)115/18065/180关于Y 的边缘分布: y 紧张 一般 和睦 P(y)50/18030/180100/180(4)关于X 的条件分布有三个:y=“紧张” x 分居 不分居 P(x)15/5035/50y=“一般” x 分居 不分居 P(x)20/3010/30y=“和睦” x 分居 不分居 P(x) 80/10020/100关于y 的条件分布有两个: X=“分居”y紧张 一般 和睦 P(y)15/11520/11580/115X=“不分居”y紧张 一般 和睦 P(y)35/6510/6520/652. 一名社会学家关于“利他主义”的研究中,对被调查者的宗教信仰情况进行 了分析,得到的结果如下表所示:表10-28(1)根据表10-28的观察频次,计算每一个单元格的期望频次并填入表10-29。
表10-29 (2)根据表10-28和表10-29计算2χ,计算公式为2()2o e ef f f χ-=∑。