第六章 时间序列分析
- 格式:doc
- 大小:101.00 KB
- 文档页数:12
时间序列分析时间序列分析是一种重要的统计方法,用于研究随时间变化的数据序列。
它可以帮助我们了解数据的趋势、季节性和周期性,预测未来的发展趋势,以及识别可能存在的异常情况。
本文将介绍时间序列分析的基本概念和步骤,并探讨其在实际应用中的重要性。
时间序列分析的目标是通过对历史数据的分析,找出其中的模式和规律,并将其应用于未来的预测。
在进行时间序列分析之前,首先需要对数据进行收集和整理。
收集的数据应该是按照时间顺序排列的,这样才能准确反映出数据的变化趋势。
整理数据的过程包括去除异常值、缺失值和季节性因素等。
时间序列分析的第一步是绘制数据的图表,以便直观地观察数据的变化趋势。
常用的图表类型包括折线图和柱状图。
接下来,需要对数据进行平稳性检验。
平稳性是指数据的均值和方差在整个时间范围内保持不变。
如果数据不平稳,需要对其进行差分处理,以消除趋势和季节性。
平稳性处理完成后,下一步是确定模型。
根据数据的特点和模式,选择合适的时间序列模型。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归移动平均滑动平均模型(ARIMA)和季节性自回归移动平均模型(SARIMA)等。
选择模型时,需要考虑模型的复杂度和适应数据的能力。
确定模型后,需要对模型进行参数估计和模型检验。
参数估计是根据历史数据来估计模型中的参数值,以使模型能够最好地拟合数据。
模型检验是通过对残差进行检验,检查模型是否能够很好地解释和预测数据。
常用的模型检验方法包括图形检验和统计检验。
最后,使用已经确定并验证的模型进行预测。
根据历史数据和模型的参数,可以预测未来一段时间内的数据情况。
在预测时,需要注意预测结果的置信区间和可靠性,并及时调整模型和预测方法。
时间序列分析在实际应用中具有广泛的应用价值。
它可以帮助政府和企业进行长期规划和决策,预测经济、销售和市场的发展趋势,优化资源配置和生产计划。
同时,时间序列分析也对个人金融投资有着重要的指导作用,可以帮助投资者了解市场动态和行业走势,制定合理的投资策略。
第六章时间序列分析练习题一、单项选择题1、下列数列中属于时间序列的是()。
A、学生按学习成绩分组形成的数列B、一个月内每天某一固定时点记录的气温按度数高低排列形成的序列C、工业企业按产值高低形成的数列D、降水量按时间先后顺序排列形成的数列2、已知各期环比增长速度为2%、5%和8%,则相应的定基增长速度的计算方法为()。
A、102%x 105%x 108%B、102%x 105%x 108%-100%C、2%X5%X8%D、2%X5%X8%-100%3、某小区新增住户2%,每家住户用量比上年提高了5%,贝卩该小区用电量总额增长()。
A、7%B、7.1%C、10%D、11.1%4、计算发展速度的分子是()。
A、报告期水平B、基期水平C实际水平D、计划水平5、平均增长量是某种现象在一定时期内平均每期增长(或减少)的()数量。
A、相对B、绝对C、累计D、平均6、说明现象在较长时期内发展的总速度的指标是()A、环比发展速度B、平均发展速度C、定基发展速度D、环比增长速度7、平均发展速度是()的()平均数。
A、环比发展速度几何B、环比发展速度算术C、定基发展速度几何D、定基发展速度算术8定基增长速度与环比增长速度的关系是()。
A、定基增长速度是环比增长速度之和B、定基增长速度是环比增长速度的连乘积C、各环比增长速度加1后连乘积减1D、各环比增长速度减1后连乘积减19、平均增长速度的计算式是()。
A、环比增长速度的算术平均数B、定基增长速度的算术平均数C、平均发展速度减去百分之百D、总增长速度的算术平均数10、某企业采煤量每年固定增长10吨,则该企业采煤量的环比增长速度()。
A、年年下降B、年年增长C、年年不变D、无法判断11、某企业的产品产量2000年比1995年增长35.1%,则该企业1996-2000年间产品产量的平均发展速度为()。
A、5 35.1%B、5 135.1%C、6 35.1%D、6135.1%12、若要观察现象在某一段时期内变动的基本趋势,需测定现象的()。
时间序列分析xx年xx月xx日CATALOGUE目录•时间序列分析简介•时间序列数据的预处理•时间序列模型的构建•时间序列模型的评估与优化•时间序列分析的应用场景与实例•时间序列分析的未来发展与挑战01时间序列分析简介时间序列分析是一种统计学方法,用于研究具有时间顺序的数据,以揭示其内在的规律性和预测未来的趋势。
时间序列数据通常表现为历史数据序列,可以用于预测未来,从而帮助决策者做出更好的决策。
定义与概念1时间序列分析的用途与重要性23通过分析时间序列数据,可以预测未来的趋势和变化,从而提前做好准备和规划。
预测未来趋势时间序列分析可以识别出异常情况或突发事件,从而及时采取措施应对。
识别异常情况通过预测未来需求,时间序列分析可以帮助决策者优化资源配置,提高效率和降低成本。
优化资源配置数据收集和处理收集和处理时间序列数据,包括数据清洗、缺失值填充等预处理工作。
通过图表等方式将数据呈现出来,以便更好地观察和分析数据。
根据数据的特点和需求选择合适的模型,并建立模型以拟合数据。
对模型进行评估和优化,以提高模型的预测能力和准确性。
利用训练好的模型对未来进行预测,并给出预测结果和建议。
时间序列分析的基本步骤数据可视化模型评估与优化预测未来趋势模型选择与建立02时间序列数据的预处理03数据格式转换根据分析需求,将数据转换为合适的格式,如将日期转换为时间戳或将多个变量合并为一个数据集。
数据清洗与整理01缺失值处理对于缺失的数据,需要选择合适的处理方法,如插值、删除或忽略。
02异常值处理异常值可能会对分析结果产生不良影响,应进行识别和处理,如平滑处理或直接删除。
季节性调整通过去除时间序列数据中的季节性因素,以揭示趋势和循环成分。
趋势分析对时间序列数据的长期变化进行分析,以识别增长或下降的趋势。
季节性调整与趋势分析数据转换为改善数据的质量和稳定性,可对数据进行转换,如对数转换或平方根转换。
平滑处理为减少数据中的随机波动和噪声,可采用平滑技术,如移动平均法或低通滤波器。
第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
时间序列分析法概述时间序列分析是指对时间序列数据进行统计建模和预测的一种方法。
时间序列数据是指按照一定时间顺序排列的数据,通常是在相等时间间隔下连续观测到的数据。
时间序列分析的目的是从数据中发现特定模式或趋势,并利用这些模式和趋势进行预测。
它通常用于经济学、金融学、气象学等领域,例如股票价格预测、销售量预测、天气预测等等。
时间序列分析方法主要包括以下几个步骤:1. 数据处理:首先需要对时间序列数据进行预处理,包括去除趋势、季节性和不稳定性等因素,以使数据满足稳定性和平稳性的假设。
这通常可以通过差分、平滑和变换等方式来实现。
2. 模型选择:根据时间序列数据的特性,选择合适的模型来进行建模和预测。
常用的模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
模型的选择通常需要借助统计指标和图形分析的方法来确定。
3. 参数估计:在选择好模型之后,需要对模型的参数进行估计。
参数估计可以通过最大似然估计、最小二乘估计或贝叶斯估计等方法来实现。
估计得到的参数可以用于模型的建立和预测。
4. 模型诊断:对模型进行诊断,检查模型是否符合数据的统计特性和假设。
常用的诊断方法包括自相关函数(ACF)和偏自相关函数(PACF)的分析,以及白噪声检验等。
如果模型存在问题,则需要对模型进行修正或调整。
5. 模型预测:根据已经估计好的模型和参数,对未来的数据进行预测。
预测可以基于滚动窗口逐步预测,也可以直接进行多步预测。
常用的预测方法包括常规预测、指数平滑预测和季节性预测等。
总的来说,时间序列分析是一种基于时间序列数据的统计建模和预测方法。
通过对时间序列数据进行处理、模型选择、参数估计、模型诊断和模型预测等步骤,可以得到对未来数据的预测结果,并用于决策和规划。
然而,需要注意的是,时间序列分析方法需要满足一定的数据假设和模型假设,以及对模型的合理性和可靠性进行评估。
第六章时间序列分析一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的,将其代表的字母填写在题干后面的括号内)1.某企业销售额每年都增加500万元,则销售额的环比增长速度()。
[2019年中级真题]A.逐年下降B.逐年增长C.每年保持不变D.无法做出结论【答案】A【解析】,y i-1逐年递增,所以环比增长速度逐年下降。
2.采用四项移动平均来测定某时间序列的长期趋势,则移动平均后的序列比原有序列()。
[2019年中级真题]A.首尾各少1项数值B.首尾各少2项数值C.首尾各少3项数值D.首尾各少5项数值【答案】B【解析】在使用移动平均法时,移动平均后的序列项数较原序列减少,当k为奇数时,新序列首尾各减少(k-1)/2项;当k为偶数时,首尾各减少k/2项。
本题中k=4。
3.若时间序列的逐期增长量近似于一个常量,则长期趋势近似一条()。
[2018年初级真题]A.直线B.抛物线C.指数曲线D.对数曲线【答案】A【解析】逐期增长量是报告期水平与前一期水平之差,说明报告期比前一时期增长的绝对数量,可以表示为:Y2-Y1,Y3-Y2,…,Y n-Y n-1。
若时间序列的逐期增长量近似于一个常量,则长期趋势近似一条直线;若时间序列中的二级增长量大体相同,则长期趋势近似一条抛物线;若时间序列中各期环比发展速度大体相同,则长期趋势近似一条指数曲线。
4.下列时间序列中,属于时点序列的是()。
[2018年初级真题]A.某高校“十二五”期间科研经费到账额B.某企业“十二五”期间利税额C.某地区“十二五”期间人口数D.某地区“十二五”期间粮食产量【答案】C【解析】时点序列是序列中的观测值反映现象在某一瞬间上所达到的水平,不同时期的观测值不能相加,相加结果没有实际意义,例如我国年末人口数序列。
ABD三项为时期序列。
5.在建立趋势方程之前,首先要确定趋势的形态,最常用的方法是先画()。
[2018年初级真题]A.散点图B.直方图C.条形图D.环形图【答案】A【解析】在建立趋势线方程之前,首先要确定趋势的形态,最常用的方法是先画散点图。
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。
第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。
这种数据称为时间序列数据。
时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。
时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。
表现了现象在时间上的动态变化,故又称为动态数列。
一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。
同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。
研究时间数列的意义:了解与预测。
[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。
知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。
在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。
几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。
二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。
1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为:△ = yn - yn-1(i=1,2,…,n)2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为:△ = yn - y(i=1,2,…,n)(i=1,2,…,n)二者关系:逐期增长量之和=累计增长量3.平均增长量平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。
一般用累计增长量除以增长的时期数目计算。
(yn - y)/n[例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。
a.逐期增长量 b.累计增长量c.平均增长量 d.增长速度答案:c解析:平均每期增长的绝对数量是平均增长量。
知识点三:增长率分析(速度分析)一.发展速度发展速度是以相对数形式表示的两个不同时期发展水平的比值,表明报告期水平已发展到基期水平的几分之几或若干倍。
计算公式为:发展速度=报告期水平/基期水平*100%由于基期选择的不同,发展速度有定基与环比之分。
①定基发展速度定基发展速度是报告期水平与某一固定时期水平(通常是最初水平)的比值。
y n /y它说明社会经济现象相对于某个基础水平,在一定时期内总的发展速度。
②环比发展速度环比发展速度是报告期水平与其前一其水平的比值。
y n / yn-1它说明所研究现象相邻两个时期(逐期)发展变化的程度。
定基发展速度与环比发展速度的关系有:第一,定基发展速度等于相应时期内各环比发展速度的连乘积:第二,两个相邻时期定基发展速度的比率等于相应时期的环比发展速度;实际工作中,经常利用上述关系式对发展速度指标进行推算或换算。
③年距发展速度对于具有季节变化的一些社会经济现象,为了消除季节变动影响,可以计算年距发展速度它消除了季节变动的影响,表明本期水平相对于上年同期水平发展变化的方向与程度,是实际统计分析中经常应用的指标。
年距发展速度=本年月(季)发展水平/去年同月(同季)发展水平【例题·判断题】环比发展速度的连乘积等于相应的定基发展速度。
答案:正确二.增长速度增长速度是报告期增长量与基期水平的比值,表明报告期水平比基期增长(或降低)了百分之几或若干倍。
计算公式:增长速度=增长量/基期发展水平增长速度=发展速度-1由于基期选择不同,增长速度也有定基与环比之分。
1.定基增长速度若增长量为累计增长量,则计算的定基增长速度,用ai表示,有:ai =(yi-y)/y2.环比增长速度若增长量为逐期增长量,则计算的环比增长速度,用bi表示,就有:b i =(yi-yi-1)/yi-1三、平均发展速度和平均增长速度平均发展速度和平均增长速度是两个非常重要的平均速度指标。
平均发展速度反映现象在一定时期内逐期发展变化的一般程度;平均增长速度反映现象在一定时期内逐期增长(降低)变化的一般程度。
平均增长速度=平均发展速度-13.年距发展速度对于具有季节变化的一些社会经济现象,为了消除季节变动影响,可以计算年距发展速度它消除了季节变动的影响,表明本期水平相对于上年同期水平发展变化的方向与程度,是实际统计分析中经常应用的指标。
年距发展速度=本年月(季)发展水平/去年同月(同季)发展水平[例题·单选题] 某企业2008年参加医疗保险的人数是2004年的3倍,比2007年增长20%,那么,2007年参加医疗保险的人数比2004年增长( )。
a .250% b .300% c .150% d .60% 答案:c解析:2008年参加医疗保险的人数q 2008是q 2004年的3倍,即q 2008=3q 2004,而q 2008比q 2007年增长20%,即q 2008=(1+20%)q 2007,所以(1+20%)q 2007=3q 2004,则q 2007=2.5 q 2004,增长率=250%-1=150%.[例题·单选题] 已知各期环比增长速度为2%,5%和8%,则相应的定基增长速度的计算方法为( )a.102%*105%*108%b. 102%*105%*108% -1c. 2%*5%*8%d. 2%*5%*8%-1 答案:b解析:有一定时期内现象发展的总速度等于各期环比发展速度的连乘积。
求增长速度要先还原为发展速度后再减1得。
[例题·单选题]某企业的产品产量2000年比1995年增长了35.1%,则该企业1996——2000年间产品产量的平均发展速度为( )答案:b解析:发展速度等于增长速度+1,平均发展速度则是定基发展速度开n 次根号。
[例题·单选题]某企业2009年产品产量比2000年增长了1倍,比2005年增长了0.5倍,则2005年比2000年增长了()a.0.33b.0.5c.1d.2答案:a解析:a2009/a2000=200%,a2009/a2005=150%,则a2005/a2000-1=200%/150%-1=133%-1=33%[例题·单选题]国家统计局2012年2月22日公告,经初步核算,2011年我国的国内生产总值按可比价格计算比上年增长9.2%。
这个指标反映的是()。
a.环比发展速度b.环比增长速度c.定基发展速度d.定基增长速度答案:b第二节长期趋势分析知识点一:时间数列影响因素的分解一、时间数列的基本构成要素在进行时间数列分解时,一般把时间数列的构成因素按性质和作用分为四类:即长期趋势、季节变动、循环波动和不规则变动。
长期趋势:时间数列在长时期内呈现出来的某种持续上升或持续下降的变动称为长期趋势。
是对未来进行预测和推断的主要依据。
长期趋势往往是由某些固定的、系统性的因素造成的。
代表着研究对象的总发展方向,它既可以是线性的,也可以是曲线的。
季节波动:时间数列在一年内重复出现的周期性波动称为季节波动。
季节波动中“季节”一词不仅仅是指一年中的四季,其实它是广义的指任何一种周期性的变化。
循环变动:时间数列呈现出来的围绕长期趋势的一种波浪形或震荡式变动称为循环变动,也称作周期变动。
周期性变动没有固定规律,其循环的幅度和周期的波动性很强,而且其周期短的一般也要3-5年,长的可达几十年。
不规则变动:由各种偶然的、突发的或不可预见的因素引起的,称为不规则变动或随机变动。
[例题·单选题] 时间序列中在一年之内的周期性波动为()。
a.长期趋势 b.季节变动c.循环变动 d.不规则变动答案:b解析:时间数列在一年内重复出现的周期性波动称为季节波动。
季节波动中“季节”一词不仅仅是指一年中的四季,其实它是广义的指任何一种周期性的变化。
[例题·单选题]若要观察现象在某一段时期内变动的基本趋势,需测定现象的()a.季节变动b.循环变动c.长期趋势d.不规则变动答案:c解析:若要观察现象在某一段时期内变动的基本趋势,需测定现象的长期趋势知识点二:时间数列的分解模型时间数列分析的一项主要内容就是把这几个影响因素从时间数列中有目的的分离出来,或者说对数据进行分解、清理,并将他们的关系用一定的数学关系式予以表达。
加法模型:假定四种变动因素相互独立,时间数列各时期发展水平是各个构成因素的总和。
用数学表达为:y=t+s+c+i乘法模型:假定四种变动因素彼此间存在着交互作用,时间数列各时期发展水平是各个构成因素的乘积,其数学表达式:y=t·s·c·it代表长期趋,s代表季节变动,c代表循环变动,i代表不规则变动。
需要说明:加法模型中,各个因素都是绝对数,乘法模型中,除了长期趋势是绝对数外,其他因素都是以相对数或指数的形式出现的。
知识点三:长期趋势分析方法一、回归方程法回归方程法就是利用回归分析方法,将时间作为解释变量,建立现象随时间变化的趋势方程。
建立趋势性方程之前,首先要确定趋势的形态,最常用的方法是先画散点图。
若散点图属直线趋势形态,可拟合直线方程;若为曲线形态,则拟合曲线方程。
线性趋势是指现象随着时间的推移,时间数列的逐期增减量大致相等,从而呈现出稳定增长或下降的线性变化规律。
直线趋势方程模型:=a+bt代表时间数列的趋势值,t代表时间标号,a代表趋势线在y轴上的截距,当t =0时,的数值; b为趋势线的斜率,即:t每变动一个单位时间时,平均变动的数值。
用最小二乘法求得a、b的参数公式为:式中,n为时间数列的项数,公式中的数值都可求。
通常,为了简便,把时间数列的中点定为原点,使得,这样,a、b的求解公式可简化为:回归方程法是利用回归分析方法,将时间作为解释变量t,建立现象随时间变化的趋势方程 tt=a+bt,利用最小二乘法对参数a,b进行估计,作出回归方程。