时间序列分析--第五章非平稳序列的随机分析精选文档PPT课件
- 格式:ppt
- 大小:522.00 KB
- 文档页数:40
图(1)考虑对该序列进行1阶差分运算,同时考察差分序列的平稳性,在原程序基础上添加相关命令,程序修改如下:图(2)时序图显示差分后序列difx没有明显的非平稳特征。
(2)“identify var=x(1);”,使用该命令可以识别差分后序列的平稳性。
纯随机性和适当的拟合图(6)普通最小二乘估计结果图(8)最终拟合模型输出结果图(9)拟合效果图图(12)带有延迟因变量的回归模型拟合效果图5.8.3拟合GARCH模型SAS系统中AUTOREG过程功能非常强大,不仅可以提供上述的分析功能,还可以提供异方差性检验乃至条件异方差模型建模。
以临时数据集example5_3数据为例,介绍GARCH模型的拟合,相关命令如下:data example5_3;input x@@;t=_n_;cards;10.77 13.30 16.64 19.54 18.97 20.52 24.3623.51 27.16 30.80 31.84 31.63 32.68 34.9033.85 33.09 35.46 35.32 39.94 37.47 35.2433.03 32.67 35.20 32.36 32.34 38.45 38.1732.14 39.70 49.42 47.86 48.34 62.50 63.5667.61 64.59 66.17 67.50 76.12 79.31 78.8581.34 87.06 86.41 93.20 82.95 72.96 61.1061.27 71.58 88.34 98.70 97.31 97.17 91.1780.20 85.12 81.40 70.87 57.75 52.35 67.5087.95 85.46 84.55 98.16 102.42 113.02 119.95122.37 126.96 122.79 127.96 139.20 141.05 140.87137.08 145.53 145.59 134.36 122.54 106.92 97.23110.39 132.40 152.30 154.91 152.69 162.67 160.31142.57 146.54 153.83 141.81 157.83 161.79 142.07139.43 140.92 154.61 172.33 191.78 199.27 197.57189.29 181.49 166.84 154.28 150.12 165.17 170.32;proc gplot data=example5_3;plot x*t=1;symbol1c=black i=join v=start;proc autoreg data=example5_3;model x=t/nlag=5dwprob archtest;model x=t/nlag=2noint garch=(p=1,q=1);output out=out p=p residual=residual lcl=lcl ucl=ucl cev=cev;data out;set out;l95=-1.96*sqrt(51.42515);u95=1.96*sqrt(51.42515);Lcl_GARCH=-1.96*sqrt(cev);Ucl_GARCH=1.96*sqrt(cev);Lcl_p=p-1.96*sqrt(cev);Ucl_p=p+1.96*sqrt(cev);proc gplot data=out;plot residual*t=2 l95*t=3 Lcl_GARCH*t=4 u95*t=3 Ucl_GARCH*t=4/overlay; plot x*t=5 lcl*t=3 LCL_p*t=4 ucl*t=3 UCL_p*t=4/overlay;symbol2c=green i=needle v=none;symbol3v=black i=join c=none w=2l=2;symbol4c=red i=join v=none;symbol5c=green i=join v=none;run;该序列输出时序图如图(13)所示。
第五章 非平稳序列的随机分析非平稳序列的确定性因素分解方法(第四章)的优点为原理简单、操作简便、易于解释等,因此在宏观经济管理与预测领域有着广泛的应用。
缺点主要有:(1)确定性因素分解方法只能提取强劲的确定性信息,对随机性信息浪费严重。
(2)确定性因素分解方法把所有序列的变化都归结为四大因素的综合影响,却始终无法提供明确、有效的方法判断各大因素之间确切的作用关系。
这些问题导致确定性因素分解方法不能允分提取观察值序列中的有效信息,导致模型拟合精度通常不够理想。
随机时序分析方法发展的必要性:弥补确定性因素分解方法的不足,为人们提供更加丰富、更加精确的时序分析工具。
5.1 差分运算5.1.1 差分运算的实质拿到观察值序列之后,无论是采用确定性时序分析方法还是随机时序分析方法,分析的第一步都是要通过有效的手段提取序列中所蕴含的确定性信息。
确定性信息的提取方法非常多,前面我们介绍过的构造季节指数、拟合长期趋势模型、移动平均、指数平滑等诸多方法都是确定性信息提取方法。
但是它们对确定性信息的提取都不够充分。
Cox 和Jenkins 在Time Series Analysis Forecasting and Control 一书中特别强调差分方法的使用,他们使用大量的案例分析证明差分方法是一种非常简便、有效的确定性信息提取方法。
而Cramer 分解定理则在理论上保证了适当阶数的差分一定可以充分提取确定性信息。
根据Cramer 分解定理,方差齐性非平稳序列都可以分解为如下形式:式中,为零均值白噪声序列。
{}t a 离散序列的d 阶差分就相当于连续变量的d 阶求导,显然,在Cramer 分解定理的保证下,d 阶差分就可以将中蕴含的d 次(关于时间的)确定性信息充分提取。
(如何证明?){}t a展开1阶差分,有等价于这意味着1阶差分实质上就是一个自回归过程,它是用延迟一期的历史数据作为自变{}1-t x量来解释当期序列值的变动状况,差分序列度量的是l 阶自回归过程中产生{}t x {}t x ∇{}t x 的随机误差的大小。