第七章 主成分分析
- 格式:ppt
- 大小:466.50 KB
- 文档页数:31
引言:主成分分析也称主分量分析,是由霍特林于1933 年首先提出的。
主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法。
通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能。
这样在研究复杂问题时就可以只考虑少数几个主成分而不至于损失太多信息,从而更容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时使得问题得到简化,提高分析效率。
本文用主成分分析的方法对某市14 家企业的经济效益进行分析。
[1] 在处理涉及多个指标问题的时候,为了提高分析的效率可以不直接对p 个指标构成的P维随机向量X=(X1, X2, X3, , Xp)进行分析,而是先对向量x进行线性变换,形成少数几个新的综合变量,使得个综合变量之间相互独立且能解释原始变量尽可能多的信息,这样在意损失很少部分信息为代价的前提下,达到简化数据结构,提高分析效率的目的。
主成分的基本思想就是在保留原始变量尽可能多的前提下达到降维的目的,从而简化问题的复杂性并抓住问题的主要矛盾。
而这里对于随机变量X1,X2,X3,……,Xp而言,其协方差矩阵或相关矩阵正是对各变量离散程度与变量之间的相关程度的信息的反映,而相关矩阵不过是将原始变量标准化后的协方差矩阵我们所说的保留原始变量尽可能多的信息,也就是指生成的较少的综合变量 (主成分)的方差和尽可能接近原始变量方差的总和。
因此在实际求解主成分的时候,总是从原始变量的协方差矩阵或相关矩阵的结构分析入手。
一般来说从原始变量的协方差矩阵出发求得的主成分与从原始变量的相关矩阵出发求得的主成分是不同的本文我们用从原始变量的相关矩阵出发求得的主成分进行分析。
[5]一、材料与方法1.1数据材料表1 14 家企业的利润指标的统计数据1.2分析方法本文采用多元统计学方法,选取14家企业作为样本收集每家企业的8个不同的利润指标,利用spss统计软件做主成分分析,给出载荷阵,并通过载荷阵给出主成分系数表,写出主成分表达式以此给出14个企业的得分值,最后根据主成分构造一个综合性评价指标,对14个企业进行综合排名。
第七章主成分分析(一)教学目的通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。
(二)基本要求了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。
(三)教学要点1、主成分分析基本思想,数学模型,几何解释2、主成分分析的计算步骤及应用(四)教学时数3课时(五)教学内容1、主成分分析的原理及模型2、主成分的导出及主成分分析步骤在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。
第 - 213 - 页第一节 主成分分析的原理及模型一、主成分分析的基本思想及数学模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。
通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21 F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。
一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
sas主成分分析sas主成分分析第七章主成分分析实验目的:熟悉并掌握主成分分析和因子分析的原理和在变量分类、综合评价、主成分回归等几个方面的应用,以及相应的SAS程序实现。
实验内容:对我国钢铁行业上市公司的财务绩效状况进行主成分分析,选择的财务指标共有以下几个:流动比率,速动比率,存货周转率,总资产周转率,净资产收益率,经营净利率,每股收益,净资产收益率增长率,股东权益增长率。
数据如下:完成以下工作:(1)选取累积贡献率>85%的前几个主成分,分别计算得分;并对选取的主成分进行解释;(2)对各上市公司的财务绩效进行综合评价;(3)利用选取的主成分得分,借助聚类分析过程对钢铁行业上市公司进行分类。
datazcf;inputname$x1-x9;cards;邯郸钢铁1.5510.9717.1650.88910.7689.2680.451-16.0246.122武钢股份2.1921.828.0880.97515.05411.1140.336-3.0392.588钢联股份1.2860.9418.0441.1247.3894.5990.205-59.988122.041宝钢股份0.9790.5718.130.6019.7428.780.205-17.6853.989莱钢股份1.3640.4975.0780.9314.1039.1370.523-24.26114.16西宁特钢1.4330.6721.4620.4716.4297.2680.1559.3493.027杭钢股份2.1081.4988.3731.41816.7567.9370.531-18.72513.662邢台轧辊2.11.5951.8830.3966.4848.9810.1325.275-1.061宁夏恒力1.3641.0641.8680.2787.46919.8420.201-35.19455.428凌钢股份1.7721.0617.8411.11912.8838.8040.5285.34310.107南钢股份1.8181.3928.8661.54612.8855.1530.409-7.0286.131酒钢宏兴1.4410.88410.1681.07112.8317.8250.36744.0376.686抚顺特钢0.9550.6523.4160.5097.1476.8510.193-8.0741.93安阳钢铁1.8931.3335.1070.9810.9497.9150.3500上海科技1.3131.1824.6430.5689.5499.4230.19935.6353.582沪昌特钢10.8139.536.5850.5671.1031.6560.01915.031-7.171山川股份1.2520.5851.4850.45110.34414.6930.209-1.6159.799浦东不锈6.1865.1212.3630.2650.7542.5130.013-45.439-1.176新华股份1.8171.3143.2910.7469.9249.0280.137-3.5771.985工益股份1.8091.2674.0460.8280.6950.450.011104.419-4.714马钢股份1.5841.0694.3180.5692.0032.1830.03235.279-12.487宝信软件3.5943.2015.0140.82114.669.7210.147126.91123.243北特钢1.3851.0922.6910.467-11.21-7.917-0.14853.839-11.058广钢股份0.8590.513.8840.7224.2472.6850.096-32.409-4.004;procprincompn=9out=prin;varX1-x9;run;procprintdata=prin;varprin1-prin9;run;主要输出结果:相关阵的特征值和特征向量EigenvalueDifferenceProportionCumulative13.626730451.710877240.40300.403021.915853210.519337180.21290.615831.396516020.349008540.15520.771041.047507480.371047740.11640.887450.676459740.478913290.07520.962660.197546440.106501190.02190.984570.091045260.044878480.01010.994680.046166770.043992140.00510.999890.002174630.00021.0000EigenvectorsPrin1Prin2Prin3Prin4Prin5Prin6Prin7Prin8Prin9x1-.2632570.5528190.3251720.0999320.0123340.1292890.077190-.0215500.697189x2-.2696730.5512290.3176490.0909930.0600930.065411-.0196680.049407-.709595x30.3207430.454750-.227474-.1958410.013020-.7729000.0382700.0086860.033825x40.3790330.331485-.342911-.1840840.0144020.490904-.3231210.4986720.026498x50.4608530.1052280.1235360.3670920.0903870.094185-.486791-.610331-.003691x60.308953-.1918380.4762280.4505290.202663-.228562-.0285870.5848690.042126x70.4802260.1255120.0219100.155827-.2454280.2558630.762567-.122168-.082054x8-.1693840.077314-.5106640.4440140.6759650.0353110.220767-.0214310.005659x90.210440-.0652010.347445-.5918860.6553280.1132300.140544-.1355950.001607由输出特征值可知,第一主成分的贡献率为40.30%,第二个主成分的.贡献率为61.58%,第三个主成分的贡献率为77.10%,前四个主成分累计贡献率为88.74%。
7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。
解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。
解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。
主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。
2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。
协方差矩阵反映了各个变量之间的线性关系。
3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征值表示了各个特征向量的重要程度。
4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。
5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。
主成分分析的含义可以从两个方面来解释。
一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。
通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。
例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。
同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。
另一方面,主成分分析还可以用于数据的预处理和异常值检测。
通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。
如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。
此外,主成分分析还可以检测数据集中的异常值。
在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。
总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。
通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。
在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。
主成分分析法的原理和步骤
主成分分析(Principal Component Analysis,PCA)是一种常用的降维技术,主要用于数据预处理和特征提取。
其原理是通过线性变换将原始数据转换为具有特定性质的新坐标系,使得转换后的坐标系上数据的方差最大化。
主成分分析的步骤如下:
1. 标准化数据:对原始数据进行标准化处理,即对每个特征进行零均值化。
这是为了消除不同量纲的影响。
2. 计算协方差矩阵:计算标准化后的数据的协方差矩阵。
协方差矩阵描述了不同特征之间的相关性。
3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征值表示新坐标系上每个特征的方差,而特征向量则表示原始特征在新坐标系上的投影。
4. 选择主成分:按照特征值的大小排序,选择前k个特征值对应的特征向量作为主成分。
选择的主成分应该能够解释数据中大部分的方差。
5. 构造新的特征空间:将选择的主成分组合起来,构成新的特征空间。
这些主成分通常被视为数据的“重要”特征,用于表示原始数据。
通过主成分分析,可以将原始数据降维到低维度的子空间上,并且保留了原始数据中的信息。
这样做的好处是可以减少数据维度,简化模型,降低计算复杂度。
同时,通过选择合适的主成分,还可以实现数据的压缩和特征的提取。