第5章 主成分分析
- 格式:doc
- 大小:126.50 KB
- 文档页数:4
一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。
新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ΛM M M ΛΛ212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z ΛΛΛ22112222121212121111............p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。
引言:主成分分析也称主分量分析,是由霍特林于1933 年首先提出的。
主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法。
通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能。
这样在研究复杂问题时就可以只考虑少数几个主成分而不至于损失太多信息,从而更容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时使得问题得到简化,提高分析效率。
本文用主成分分析的方法对某市14 家企业的经济效益进行分析。
[1] 在处理涉及多个指标问题的时候,为了提高分析的效率可以不直接对p 个指标构成的P维随机向量X=(X1, X2, X3, , Xp)进行分析,而是先对向量x进行线性变换,形成少数几个新的综合变量,使得个综合变量之间相互独立且能解释原始变量尽可能多的信息,这样在意损失很少部分信息为代价的前提下,达到简化数据结构,提高分析效率的目的。
主成分的基本思想就是在保留原始变量尽可能多的前提下达到降维的目的,从而简化问题的复杂性并抓住问题的主要矛盾。
而这里对于随机变量X1,X2,X3,……,Xp而言,其协方差矩阵或相关矩阵正是对各变量离散程度与变量之间的相关程度的信息的反映,而相关矩阵不过是将原始变量标准化后的协方差矩阵我们所说的保留原始变量尽可能多的信息,也就是指生成的较少的综合变量 (主成分)的方差和尽可能接近原始变量方差的总和。
因此在实际求解主成分的时候,总是从原始变量的协方差矩阵或相关矩阵的结构分析入手。
一般来说从原始变量的协方差矩阵出发求得的主成分与从原始变量的相关矩阵出发求得的主成分是不同的本文我们用从原始变量的相关矩阵出发求得的主成分进行分析。
[5]一、材料与方法1.1数据材料表1 14 家企业的利润指标的统计数据1.2分析方法本文采用多元统计学方法,选取14家企业作为样本收集每家企业的8个不同的利润指标,利用spss统计软件做主成分分析,给出载荷阵,并通过载荷阵给出主成分系数表,写出主成分表达式以此给出14个企业的得分值,最后根据主成分构造一个综合性评价指标,对14个企业进行综合排名。
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
多元统计分析陈钰芬课后答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
主成分分析SPSS操作步骤以教材第五章习题8的数据为例,演示并说明主成分分析的详细步骤:一.原始数据的输入注意事项:关键注意设置好数据的类型(数值?字符串?等等)以及小数点后保留数字的个数即可。
二.选项操作1. 打开SPSS的“分析"→“降维”→“因子分析”,打开“因子分析"对话框(如下图)2. 把六个变量:食品、衣着、燃料、住房、交通和通讯、娱乐教育文化输入到右边的待分析变量框.3. 设置分析的统计量打开最右上角的“描述”对话框,选中“统计量"里面的“原始分析结果”和“相关矩阵”里面的“系数”。
(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵。
)。
然后点击“继续".打开第二个的“抽取”对话框:“方法”里选取“主成分”;“分析”、“输出"和“抽取”这三项都选中各自的第一个选项即可。
然后点击“继续”。
第三个的“旋转”对话框里,选取默认的也是第一个选项“无”。
第四个“得分”对话框中,选中“保存为变量"的“回归”;以及“显示因子得分系数矩阵”。
第五个“选项"对话框,默认即可.这时点击“确定”,进行主成分分析。
三.分析结果的解读按照SPSS输出结果的先后顺序逐个介绍1.相关系数矩阵:是6个变量两两之间相关系数大小的方阵。
2。
共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。
CommunalitiesInitial Extraction食品 1.000.878衣着 1.000.825燃料1。
000.841住房 1.000.810交通和通讯 1.000。
919娱乐教育文化 1.000.5843.总方差的解释:系统默认方差大于1的为主成分,所以只取前两个,前两个主成分累加占到总方差的80。
939%。
并且第一主成分的方差是3。
568,第二主成分的方差是1.288。
主成分分析法原理简介1.什么是主成分分析法主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。
在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
2.主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。
这时就需要借助主成分分析来概括诸多信息的主要方面。
我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。
任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。
如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。
由这一点来看,一项指标在个体间的变异越大越好。
(一)主成分分析法的基本思想主成分分析(PrincipalComponentAnalysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
假设X 是以n 个标量随机变量组成的列向量,并且μk 是其第k 个元素的期望值,即,μk=E(xk),协方差矩阵然后被定义为: Σ=E{(X -E[X])(X-E[X])}=(如图对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p ………………Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
主成分分析的方法
主成分分析(Principal Component Analysis,PCA)是一种常用的降维方法,通过线性变换将原始数据投影到一个新的空间中,使得数据在新的空间中的最大方差出现在第一个主成分上,第二大方差出现在第二个主成分上,以此类推。
这样可以保留较多的原始数据信息,同时减少数据的维度。
主成分分析的方法可以简洁地总结为以下几个步骤:
1. 标准化数据:将原始数据进行标准化处理,使得各个特征具有相同的尺度。
2. 计算协方差矩阵:计算标准化后的数据各个特征之间的协方差矩阵。
3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
4. 选择主成分数量:根据特征值的大小选择主成分的数量,通常选择特征值大于某个阈值的主成分。
5. 构造变换矩阵:将特征值较大的特征向量作为基向量构造出变换矩阵,以实现数据的降维。
6. 数据投影:将原始数据通过变换矩阵进行投影,得到降维后的数据。
主成分分析的目标是选择能够最大程度保留原始数据信息的主成分,这可以通过保留最大方差或者最小重构误差来衡量。
主成分分析在数据预处理、特征提取和可视化等领域有广泛的应用。
第五章 主成分分析 一、填空题
1.主成分分析就是设法将原来众多 的指标,重新组合成一组新的 的综合指标来代替原来指标。
2.主成分分析的数学模型可简写为 ,该模型的系数要求 。
3.主成分分析中,利用 的大小来寻找主成分。
4.第k 个主成分k y 的贡献率为 ,前k 个主成分的累积贡献率为 。
5.确定主成分个数时,累积贡献率一般应达到 ,在spss 中,系统默认为 。
6.主成分的协方差矩阵为_________矩阵。
7.原始变量协方差矩阵的特征根的统计含义是________________。
8.原始数据经过标准化处理,转化为均值为__ __,方差为__ __的标准值,且其________矩阵与相关系数矩阵相等。
9.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为________。
10.SPSS 中主成分分析采用______________命令过程。
二、判断题
1.主成分分析就是设法将原来众多具有一定相关性的指标,重新组合成一组新的相互无关的综合指标来代替原来指标。
( )
2.主成分y 的协差阵为对角矩阵。
( ) 3.p x x x ,,,21 的主成分就是以∑的特征向量为系数的一个组合,它们互不相关,其方差为
∑的特征根。
( ) 4.原始变量i x 的信息提取率()m i V 表示这m 个主成分所能够解释第i 个原始变量变动的程度。
( )
5.在spss 中,可以直接进行主成分分析。
( ) 6.主成分分析可用于筛选回归变量。
( )
7.SPSS 中选取主成分的方法有两个:一种是根据特征根≥1来选取; 另一种是按照累积贡献率≥85%来选取。
( ) 8.主成分方差的大小说明了该综合指标反映p 个原始观测变量综合变动程度的能力的大小。
( )
9.主成分表达式的系数向量是协方差矩阵∑的特征向量。
( )
10.主成分k y 与原始变量i x 的相关系数()i k x y ,ρ反映了第k 个公共因子对第i 个原始变量的解释程度。
( ) 三、简答题
1.简述主成分的概念及几何意义。
2.主成分分析的基本思想是什么? 3.简述主成分分析的计算步骤。
4.主成分有哪些性质?
5.主成分主要应用在哪些方面? 四、计算题
1.假设3个变量1x 、2x 和3x 的协方差矩阵为:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=∑20
05
3
032 要求用此协差阵和相应的相关阵对这3个变量进行主成分分析,根据计算结果说明应选取多
少个主成分以代表原来的3个变量,并说明理由。
2.在一项研究中,测量了376只鸡的骨骼,并利用相关系数矩阵进行主成分分析,见下表:
(2)计算前三个主成分各自的贡献率和累积贡献率。
(3)对于y4,y5,y6的方差很小这一点,你怎样对实际情况作出推断。
3.假设某商场棉鞋1x 、凉鞋2x 、布鞋3x 三种商品销售量的协方差矩阵如下:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=∑20
05
2
021 试求各主成分,并对各主成分的贡献率和各个原始观测变量的信息提取率进行讨论。
4.对某市15个大中型工业企业进行经济效益分析,经研究确定,从有关经济效益指标中选取7个指标作分析,即固定资产产值率(X1),固定资产利税率(X2),资金利润率(X3),资金利税率(X4),流动资金周转天数(X5),销售收入利税率(X6)和全员劳动生产率(X7)。
数据资料如下:
根据下面SPSS 软件的输出信息,回答:
(1)这个数据的7个变量可以用几个综合变量(主成分)来表示? (2)这几个综合变量(主成分)包含有多少原来的信息? (3)写出这几个综合变量(主成分)的模型。
Total Variance Explained
Component Matrix(a)
a 2 components extracted.
五、证明题
主成分有三个重要性质: ⑴F 的协差阵为对角阵Λ; ⑵
1
1
p
p
ii
i i i σ
λ===∑∑;
⑶(),k i F X ρ=
;
试分别加以证明。
六、SPSS 操作题
1.下面是8个学生两门课程的成绩表:
(1)求出两个特征根及其对应的单位特征向量;
(2)求出主成分,并写出表达式;
(3)求出主成分的贡献率,并解释主成分的实际意义;
(4)求出两个主成分的样本协方差矩阵;
(5)第1个样本主成分与第2个变量样本之间的相关系数为多少
(6)求出8个学生第一主成分得分并进行排序
2.某中学十二名女生的身高x1,体重x2的数据如下:
(1)两个变量的协方差矩阵与相关系数阵;
(2)两个特征根及其对应的单位特征向量;
(3)主成分的表达式并解释各贡献率的大小意义和主成分的实际意义;(4)如果舍弃主成分y2,则哪一个原变量的信息损失量最大;
(5)画出全部样本的主成分散点图。
3.根据下列某地区11年数据
(2)求特征根及其对应的特征向量。
(3)求出主成分及每个主成分的方差贡献率;
(4)利用主成分方法建立y与x1,x2,x3的回归方程(取两个主成分)。