船舶概论
- 格式:doc
- 大小:52.50 KB
- 文档页数:10
船舶概论知识点总结船舶是指用于在水上航行的载货或载人的交通工具,是人类用于海上运输的重要工具之一。
船舶可分为商船、军舰及其他专用船舶。
船舶的种类繁多,功能各异,但其共同点是都需要遵循相关的航海规则和航行标准。
一、船舶的分类和基本结构船舶的分类主要取决于其用途和功能。
按用途可分为货船、客船、油船、工程船等;按功能可分为推进船、辅助船、特种船等。
船舶的基本结构包括船体、船台、船底、船首、船尾、甲板等主要部分。
1. 船体是船舶的基本外形,包括船首、船尾、船体各部分以及门窗舷等装置。
2. 船台是承受船体全重和各种荷载的主要构件。
3. 船底通常为平面或稍呈拱形,以增加船艏的上升力和减小阻力。
4. 船首是船头的部分,一般采取弓形、锥形或家宽形设计。
5. 船尾通常为尾突尾、平坦尾或干形尾设计,以减小对流阻力。
二、船舶的基本性能和动力系统船舶的基本性能包括航速、载重量、平稳性、安全性等方面。
航速是船舶的重要指标,直接影响了船舶的运输效率和经济性。
船舶的动力系统包括主机、辅机、动力传动系统和操纵系统等。
1. 主机是船舶的动力来源,通常采用柴油机或蒸汽轮机。
2. 辅机是用于供船舶各项设备使用的动力机械。
3. 动力传动系统包括主机与螺旋桨的连接系统,主机与辅机的连接系统等。
4. 操纵系统包括舵机、推进器、操舵机构等。
三、船舶的结构及材料船舶的结构和材料直接影响了船舶的使用寿命、航行性能和安全性。
船舶的结构主要包括船体结构、舱壁结构、甲板结构等。
船舶的主要结构材料包括钢材、铝合金、复合材料等。
1. 钢材是船舶结构的主要材料,其特点是强度高、韧性好、可塑性强。
2. 铝合金是轻质、具有较高强度和良好耐腐蚀性的船舶结构材料。
3. 复合材料是由两种或两种以上的不同性能的材料组成的复合材料,具有比重轻、强度高、耐久性好等优点。
四、船舶的安全管理和规范要求船舶的安全管理和规范要求是确保船舶安全、环保、高效运行的重要保障。
船舶的安全管理主要包括船舶建造、操作、维护、动力系统等方面。
1. 船是一个狭长和左右对称的几何体,它的上部、下部和两边分别为上甲板、船底和左右舷所包围。
2. 船体的几何要素包括船的大小和形状。
3. 中线面:通过船宽中点的纵向垂直平面,它把船体分为相互对称的左右舷,因此中线面是船体的对称面。
4. 舯站面:通过船长中点垂直于中线面的横向垂直平面,把船体分为首尾两部分。
5. 基平面:通过船长中点龙骨上缘的水平面,与中线面、舯站面相互垂直,三者组成主坐标平面。
6. 也有的用设计水线面代替基平面,它是通过设计水线处的水平面,把船体分为水上和水下两部分。
7. 船体型表面在三个基本投影面上的截面分别称为中纵剖面、舯剖面和水线面。
8. 甲板边线:甲板型表面在舷边的曲线。
9. 甲板中线:甲板型表面与中线面的交线。
10. 舷弧:甲板边线的纵向曲度。
11. 首舷弧:首垂线处的甲板边线比船舯处的甲板边线高处的距离。
12. 尾舷弧:尾垂线处的甲板边线比船舯处的甲板边线高处的距离。
13. 脊弧:甲板中线的纵向曲度。
14. 梁拱:为了排除积水,船的甲板是从中线向两舷逐渐下降,下降度FH 称为梁拱。
15. 船体可分为两部分,在最上层连续甲板以下的称为主船体,以上的称为上层建筑.16. 船长(L)----通常选用的船长有三种,即总长、垂线间长和设计水线长。
17. 总长(L OA ):自船首最前端至船尾最后端平行于设计水线的最大距离。
18. 垂线间长(Lpp ):首垂线(F.P)与尾垂线(A.P)之间的水平距离。
19. 水线长(L WL ):平行于设计水线的任一水线与船体型表面首尾端交点间的水平距离。
20. 型宽(B )----指船舶型表面之间垂直于中线面方向度量的最大距离,一般指船长中点处的宽度。
21. 型深(D )----在船舶型表面的甲板边线最低点处,自龙骨板上表面至上甲板边板的下表面的垂直高度。
22. 吃水(d )----龙骨基线至设计水线的垂直高度。
23. 干舷(F )----自设计水线至上甲板边板上表面的垂直距离。
1. 船是一个狭长和左右对称的几何体,它的上部、下部和两边分别为上甲板、船底和左右舷所包围。
2. 船体的几何要素包括船的大小和形状。
3. 中线面:通过船宽中点的纵向垂直平面,它把船体分为相互对称的左右舷,因此中线面是船体的对称面。
4. 舯站面:通过船长中点垂直于中线面的横向垂直平面,把船体分为首尾两部分。
5. 基平面:通过船长中点龙骨上缘的水平面,与中线面、舯站面相互垂直,三者组成主坐标平面。
6. 也有的用设计水线面代替基平面,它是通过设计水线处的水平面,把船体分为水上和水下两部分。
7. 船体型表面在三个基本投影面上的截面分别称为中纵剖面、舯剖面和水线面。
8. 甲板边线:甲板型表面在舷边的曲线。
9. 甲板中线:甲板型表面与中线面的交线。
10. 舷弧:甲板边线的纵向曲度。
11. 首舷弧:首垂线处的甲板边线比船舯处的甲板边线高处的距离。
12. 尾舷弧:尾垂线处的甲板边线比船舯处的甲板边线高处的距离。
13. 脊弧:甲板中线的纵向曲度。
14. 梁拱:为了排除积水,船的甲板是从中线向两舷逐渐下降,下降度FH 称为梁拱。
15. 船体可分为两部分,在最上层连续甲板以下的称为主船体,以上的称为上层建筑.16. 船长(L)----通常选用的船长有三种,即总长、垂线间长和设计水线长。
17. 总长(L OA ):自船首最前端至船尾最后端平行于设计水线的最大距离。
18. 垂线间长(Lpp ):首垂线(F.P)与尾垂线(A.P)之间的水平距离。
19. 水线长(L WL ):平行于设计水线的任一水线与船体型表面首尾端交点间的水平距离。
20. 型宽(B )----指船舶型表面之间垂直于中线面方向度量的最大距离,一般指船长中点处的宽度。
21. 型深(D )----在船舶型表面的甲板边线最低点处,自龙骨板上表面至上甲板边板的下表面的垂直高度。
22. 吃水(d )----龙骨基线至设计水线的垂直高度。
23. 干舷(F )----自设计水线至上甲板边板上表面的垂直距离。
船舶概论名词解释:1.垂线间长LPP:船中首、尾垂线之间的纵向距离称为间长.(P11)2.型表面:钢船船体外板的内表面称为船体型表面.(P11)3.性深D:在船长中点处由平板龙骨上缘量至上甲板横梁上缘的垂直距离.(P11)4.型宽B:在船体最宽处.沿船舶设计水线自一舷的肋骨外缘之间的最大水平距离(P11)5.吃水d:在船长中点处由平板龙骨上缘量至夏季载重水线的垂直距离,称为型吃水.(P12)6.干舷F:在船长中点处由夏季载重水线量至上甲板边缘线上缘的垂直距离.F=D-d+干舷甲板厚度(P12)7.水线面系数Cw:水线面面积Aw与船长L和型宽B的乘积之比,称为水线面系数.即:Cw=Aw/L×B(P12)8.中横剖面系数Cm:中横剖面浸水面积Am与对型宽B和型吃水d的乘积之比,称为中横剖面系数.即:Cm=Am/B×d(P12)9.方形系数:型排水体积V与船长L型宽B及型吃水d的乘积之比,称为方形系数.即CB=V/L×B×d(P12)10.纵向棱形系数CP:型排水体积V与以中横剖面面积Am为断面,长度为船长L的柱体的体积之比.即CP=V/L×Aw=CB/CW(P12)11.浮性:船舶在一定装载情况下漂浮与水面一定平衡位置的能力,称为船舶浮性.12.稳性:船舶受给定外力作用发生倾斜但不倾覆.当外力消失后能自行回复到原来平衡位置的性能,称为船舶稳性.(P19)13.储备浮力:船体设计水线以上水密体积所能提供的浮力.储备浮力通常用干舷表示,干舷越大,储备浮力越大,船体强度越好.(P22)14.空船排水量:是指船舶出厂时空船的排水量.它包括船体、机器、锅炉、设备、船员及行李的重量(P20)15.抗沉性:船舶一舱或连续数舱破舱浸水后,能保持一定的浮性和稳性的性能.称为船舶抗沉性.(P19)16.限界线:沿着船舷由舱壁甲板上表面一下76mm处绘的线,称为限界线.(P26)17.一舱不沉制:指任意一舱破舱进水后的最终平衡水线不超过限界线,且能达到抗沉性所要求的浮性和稳性的船舶(P26)18.稳心:船舶小倾角横倾前后浮力作用线交点.(P24)19.快速性:在一定的主机功率情况下,表征船舶航行速度快慢的性能,称为船舶快速性.船舶快速性分为阻力和推进两个方向.(P19)20.兴波阻力:船舶航行时兴起船行波,改变水在船体表面的压力分布而形成的首尾压差阻力,称为兴波阻力.Rw.(P28)21.耐波性:船舶在波浪上克服摇摆等运动的性能.(P19)22.转首性:表示船舶应舵转首的性能(P39)23.推进系数:船的有效功率Pe和主机功率之比,以Pc来表示.Pc=Pe/Ps.(P27)24.谐摇:船舶受到的遭遇周期等于固有横摇周期时的横摇.25.操纵性:船舶能够保持或改变航向的性能(P19)26.航向稳定性:保持原有的航向能力.(P39)27.纵骨架式:板格的长边沿船长方向,短边沿船宽方向,纵向骨材的间距小,横向衔材的间距大.(P48)28.总纵弯曲:作用在船体上的重力、浮力等而引起的船体绕水平横轴的弯曲称为总纵弯曲(P46)29.总纵强度:船体结构抵抗纵向弯曲不使整体结构遭到破坏或严重变形的能力.称为总纵强度(P47)30.横骨架式:板格的边长沿船宽方向.短边沿船长方向,横向骨材的间距小,纵向衔材的间距大.(P48)31.锚泊设备:利用抓力或自重使船舶于水面固定位置的设备.它由锚锚链锚链筒止链器起锚机械锚链管和锚链舱等组成(P88)32.船舶系统:是指船上输送液体和气体所需的管子及其附件阀件机械和仪表的总称.主要包括舱底水系统灭火系统日用水系统通风系统空气调节系统(P99)33.航海仪器:是用于确定船位和保证船舶安全航行仪器的统称,主要是航行定位仪器.主要分为航迹推算陆标定位天文定位和无线电定位(P103)34.区域造船法:以区域为基础,将船体建造舾装和涂装三种不同类型的作业相互协调和有机结合地组织生产,形成壳舾涂一体化建造技艺.35.舾装工程:造船业通常将主体船和上层建筑以外的机电装置运管设备生活设施各种属具和舱室装饰等,统称为舾装工程.(P110)36.船体建造工艺:加工制作船体构,再将它们组装成中间产品(部件分段总段),然后吊运至船台上总焊接装成船体建造工艺.简答题:1.古代船舶和近代船舶各有什么特点?答: (1)古代船舶的特点是木质船体,依靠人、畜或风帆推进,排水量小。
油船的现代化程度油船的发展从最早的专业化运输船开始,主要是运输散装石油的油船,其他运输船舶的专业化大体是从上个世纪50年代才迅速发展起来的。
随着能源消耗的增加,天然气、石油气的扩大应用,使油船、液化气船需求增加,各种类型、用途的油船进一步增加。
船舶的大型化可以降低单位造价,有利于降低运输成本。
上个世纪五十年代以后,商船特别是油船、散货船、集装箱船想大型化方向发展非常迅速。
1950年世界上最多的油船载重量仅2.8万吨,到了1975年则造出了56.5万吨的“海上巨人”号超大型油船,这是迄今为止最大的运输船舶。
目前,世界上拥有的10万吨以上的超大型油轮(VLOC)已达数百艘。
以下以308000载重吨超大油轮为例,介绍现代化油轮的特点。
本船是一艘远洋航行、单桨、单柴油机驱动的原油船,它适合载运闪点低于60℃的原油。
船舶参数主尺度:载重量:入级符号:总长≤333.00m 设计吃水≈285,000吨CCS垂线间长320.00m 结构吃水≈308,000吨★CSA Oil Tanker, DoubleHull,CSR,型宽60.00m 服务航速:15.7knotsF.P.≤60C,ESP.Loading ComputerS.I.D.型深29.80m续航力:★CSM.AUT-0,SCM,VSC,LGS,PMS设计吃水20.50m 以服务航速航行20,000海里&结构吃水21.80mDNV1A1,Tanker for Oil ESP,CSR,E0VCS-2,TMON船舶性能稳性: 船舶受外力作用离开平衡位置倾斜而不至倾覆,当外力消除后仍能回复到原来平衡位置的能力。
此船的船型决定它需要非常好的稳性,而油在船舱里会震荡,使船的稳性变差,解决的方法是在船舱内加设纵舱壁来制荡,60米的船宽使油船加设了两道平板纵舱壁。
抗沉性:船舶遭受海损事故而使舱室进水,但仍能保持一定的浮性喝稳性而不至于沉没或者倾覆的能力。
传统的油船甲板一般为单层板架,货油藏区域大多采用纵骨架式结构,小型油船也有采用横骨架式结构的。
但是,为防止大型油船因触礁或碰撞等事故造成船体破损泄油污染海洋,国外双层壳体油船的技术现状。
也使船舶在底部受损时仍能保持浮性。
耐波性:船舶在风浪等外力作用下,产生摇荡运动以及砰击、上浪、失速等现象时仍能保持一定航速安全航行的性能。
船舶的摇荡运动包括横摇、纵摇、首尾摇、垂荡(又称升沉)及其耦合运动,其中以横摇影响最大。
剧烈的摇荡对船舶会产生一系列有害的影响,可能使船舶失去稳性而倾覆,使机器和仪表运转失常,使船体构件和设备因负荷增加而损坏,使固定不牢的货物移动,引起旅客晕船、居住条件恶化,使船因螺旋桨工作效率下降和阻力增加而失速等等。
因此,必须在设计阶段就要估算船舶的耐波性能,采取措施以减缓船舶在风浪中的摇荡运动。
此船首部,球鼻艏在航海时起减少的是兴波阻力,没有球鼻艏时会在船舷产生波浪形的水波。
球鼻艏可以产生一个翻转180°的波,与之抵消。
但球鼻艏只在其设计的航速上产生正效应,否则阻力更大,所以只用远洋海船。
操纵性:船舶按驾驶人员的意图保持或改变航速和航向的性能。
操纵性对船舶航行安全和经济效能都有重要影响。
船舶操纵是通过驾驶员运用操纵装置来实现的。
船舶结构本船为倾斜艏柱带球艏、方艉带开式球艉,带挂舵臂的半平衡悬挂舵和一层连续上甲板,无艏楼。
货舱由双底、双壳和两道平板纵舱壁组成。
钢质运输船船体是用各种规格钢板和型材焊接而成,由船底、两舷、首端、尾端和甲板组成水密空心结构。
船底有单底和双底结构,由船底外板(包括平板龙骨)、内底板和内底边板(双层底结构的船有)、纵向骨架、横向骨架等构件组成。
船底骨架有横骨架式和纵骨架式两种。
横骨架式结构由肋板(横向构件)、中桁材(位于船底纵向中心线处的纵桁,又称中内龙骨)、旁桁材(位于船底纵向中心线两侧的纵桁,又称旁内龙骨)等构件组成;纵骨架式结构减少肋板数,但增加船底纵骨。
两舷由(肋骨和舷侧纵桁、纵骨等)组成。
为了加强船体首尾结构,在首端有首柱,在尾端设尾柱。
船体内部设若干道舱壁,形成不同用途的舱室。
船的首部和尾部设有防撞舱壁,分别形成首尖舱、尾尖舱,以保安全。
安装主机、辅机及其附属设备的机舱一般设在船中部或尾部,相应的船型称为中机型或尾机型。
船体垂直方向则用甲板和平台分隔,甲板少则一层,如油船、散货船;多则十余层,如远洋客船。
贯通首尾的最上一层水密甲板称上甲板。
船体的强度须能承受船上的载荷和外界水压力,以及风浪中所产生的弯曲和扭转等应力。
上层建筑是指上甲板以上的建筑物。
货船的上层建筑主要供驾驶操纵和船员生活之用。
过去典型的杂货船多为中机型,其上层建筑分别设在船首、船尾和中部,分别称为首楼、尾楼和桥楼,这种船称为三岛式船。
桥楼是全船工作和生活的中心,最上层是驾驶台、海图室、电报间等,驾驶台以下部分为船员居住、休息、娱乐的场所。
为了取得更多的使用和居住面积,可把三楼分别或全部联接起来。
如把首楼和桥楼联接起来,即成长首楼船;把尾楼和桥楼联接起来,即成长尾楼船。
20世纪初,船主们为了扩大船舶装货容积,同时利用当时船舶吨位丈量法规中的某些弱点,建成一种有两层甲板的遮蔽甲板船。
两层甲板之间的空间可以装货而又可以不计入总吨位,从而减轻了各种服务费用及纳税额,因此长期成为干货船的主要船型。
但该船型水密性差、不安全,所以现在已由国际海事组织修改丈量法规,取消了这种船型。
现代货船以尾机型居多,上层建筑也多设在船尾。
客船的上层建筑比货船的发达,甲板层数多,每层内部用钢质围壁加以分隔,成为旅客居住和进行各种活动的场所。
动力装置:包括为船舶提供推进动力的主机,为全船提供电力和照明的发电机组,以及其他各种辅机和设备。
主机是运输船舶的心脏。
现代运输船舶的主机绝大多数为低速或中速柴油机,由它直接或减速后驱动装在尾部的螺旋桨来推动船舶前进。
除柴油机外,也有少数船舶采用蒸汽机、汽轮机、燃气轮机乃至核动力装置。
柴油机船上发电机组为2~3台柴油发电机组,一般采用400伏三相交流电,频率为50赫兹或60赫兹。
船上还装有副锅炉或气锅炉,为全船提供蒸汽和热源。
各种辅机和设备主要有空气压缩机、各种油泵、水泵以及热交换器、管路、油水柜等。
船舶设备:舾装设备和各种系统舾装设备包括:①操纵设备,如舵设备;②系船设备,如锚泊设备和系泊设备等;③关闭设备,如舱口盖、水密门、舷门、出入口盖等;④信号设备如信号灯、信号旗等;⑤救生设备,如救生艇、救生筏、救生圈、救生衣等;⑥起货设备如货船上的吊杆装置和甲板起重机(见船舶起货设备),油船上的货油泵,滚装船上的升降机、跳板等等;⑦其他设备,如客船上的防摇设备,拖船上的拖带设备,顶推船上的顶推装置等。
船上各种系统包括:将舱底积水排出船外的舱底水排出系统,向压载水舱供水和把水排出的压载水系统,送水灭火的消防系统,排除甲板积水、粪便水和洗濯污水的疏水、处理和排污系统,供给船员和旅客所需饮用水、洗濯水和卫生用水的生活用水系统,以及通风、取暖和空气调节系统等。
油轮船型之变世界上第一艘具有现代油船特征的散装油船是1886年英国建造的“好运”号机帆船,它将货舱分隔成若干长方格舱,可装石油2307吨。
1966年,“出光”号20.9万DWT油轮成为世界上第一艘VLCC。
随后,1967~1973年是油轮船东的黄金时期,这几年船东的利润超过了营运成本的8倍,巨大的利润推动了油轮尺度增长的同时也开创了建造超大型油轮的热潮。
1981年,“海上巨人”号56万DWT油轮是迄今为止世界上建造最大的巨型油轮。
不仅如此,它还是世界上最长的船舶与最长的人造水面漂浮物,比横躺下来的艾菲尔铁塔还长。
20世纪90年代初,双壳VLCC登上历史舞台。
2001年和2002年韩国大宇重工建造了四艘45万DWT的双壳油轮,它们是这个等级首批双壳油轮,标志着世界巨型油船双壳化进程的加快。
中国首届“船舶设计大师”获得者、大连船舶重工副总工程师兼船研所所长马延德说,从现代油轮发展史我们可以看出,油轮从最初诞生至今,其船型和吨位一直伴随着世界石油消费量和石油海运量的不断增加而发展,实现了由小吨位到大吨位,由单壳到双壳的转变。
在船型方面,当今油轮已由早期的“三岛式”发展为现代VLCC双壳油轮,与此同时在全球科学技术迅猛发展和运油量激增的推动下,油轮的载重量不断增大,目前无论从现有船队规模还是订单上看世界船队构成,VLCC都当仁不让地成为世界原油运输的主力船型。
今天,在国际航运界,拥有VLCC数量的多寡代表着一个油轮船队的实力。
据克拉克松提供的数据显示,截至2009年11月初,全球VLCC油船船队保有量为1.619亿载重吨。
在船型不断变革期间,世界油轮设计制造的技术也发生了变革,例如,船舶设计者通过型线、系数的调整与优化,提高了同等尺度下船舶的装载量;以高强度钢为代表的先进材料大规模地使用极大地提高了油轮的载货量;高效大功率低速柴油机替代早期的蒸汽轮机,以及新型电喷柴油机的推广采用,在保障船舶快速性和经济性的同时,有效地改善着船舶的环保性能和双机双桨创新型VLCC研发等等。
谈到双壳油轮,我们不能不提2006年4月1日生效的双壳油轮共同结构规范(JTP),20世纪90年代之前建造的VLCC基本全部为单壳油轮,而由单壳油轮频频引发的原油泄漏事故,使得全球谈“单壳”色变。
因此,国际海事组织决定在JTP规范中规定2015年开始只有双壳油轮可以在海洋上运行。
国际海事组织从防污染角度出发,对油轮船体提出了双壳体结构及其等效结构的多种方案。
针对国际海事组织的新规定,由多国造船集团组成的欧洲造船公司最近提出了符合生态要求的欧洲经济型油船E-3(European、Ecological、Economical)方案,被称为21世纪的油船。
这是当今VLCC最新发展的一个标志,也是西欧船厂联台起来欲与远东船厂在VLCC上进行竞争的一个新动向,这值得引起中国造船界的重视。
对于中国油轮技术的发展,我们不得不提曾经被评为“中国十大名船”之一的中国第一艘VLCC伊朗·德瓦尔”号。
2002年8月31日,历时3年时间,大连新船重工有限责任公司为伊朗国家油轮公司建造的30万吨巨型油轮“伊朗·德瓦尔”号签字交付,与该船同型同订单的船还有4艘。
从1999年项目合同正式签订,到2004年最后一艘船全部建成交工,经过近五年时间的艰苦努力,中国首次承造的VLCC项目取得了圆满成功。
伊朗船东在接收该油轮时,称赞这艘超大型油轮是“PioneerofChina(中国先锋)”,并愉快地说:“伊朗船队中虽然有日本和韩国建造的VLCC,但中国建造的这艘是最好的。
”“伊朗·德尔瓦”号等几艘VLCC的建成标志着中国造船工业在超大型油轮的设计建造上实现了零的突破,不仅实现了几代中国造船人的梦想,也打破了世界造船强国在该领域的垄断,从而使中国进入世界仅有的几个能够设计建造超大型油轮国家的行列。