第4讲晶体三极管(9-12)知识讲解
- 格式:ppt
- 大小:1009.50 KB
- 文档页数:25
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue 发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
PN 结的本质:在 P 型半导体和 N 型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为 PN 结。
1、切入点:要想很自然地说明问题,就要选择恰当地切入点。
讲三极管的原理我们从二极管的原理入手讲起。
二极管的结构与原理都很简单,内部一个 PN 结具有单向导电性,如示意图B。
很明显图示二极管处于反偏状态, PN 结截止。
我们要特殊注意这里的截止状态,实际上 PN 结截止时,总是会有很小的漏电流存在,也就是说 PN 结总是存在着现象, PN 结的单向导电性并非百分之百。
为什么会浮现这种现象呢?这主要是因为PN 结反偏时,能够正向导电的多数载流子被拉向电源,使PN 结变厚,多数载流子不能再通过 PN 结承担起载流导电的功能。
所以,此时漏电流的形成主要靠的是少数载流子,是少数载流子在起导电作用。
反偏时,少数载流子在电源的作用下能够很容易地反向穿过 PN 结形成漏电流。
漏电流之所以很小,是因为少数载流子的数量太少。
很明显,此时漏电流的大小主要取决于少数载流子的数量。
如果要想人为地增加漏电流,只要想办法增加反偏时少数载流子的数量即可。
所以,如图B漏电流就会人为地增加。
其实,光敏二极管的原理就是如此。
光敏二极管与普通光敏二极管一样,它的 PN 结具有单向导电性。
因此,光敏二极管工作时应加之反向电压,如图所示。
当无光照时,电路中也有很小的反向饱和漏电流,普通为1×10-8 —1×10-9A(称为暗电流),此时相当于光敏二极管截止;光敏二极管工作在反偏状态,因为光照可以增加少数载流子的数量,于是光照就会导致反向漏电流的改变,人们就是利用这样的道理制作出了光敏二极管。
既然此时漏电流的增加是人为的,那末漏电流的增加部份也就很容易能够实现人为地控制。
2、强调一个结论:讲到这里,一定要重点地说明 PN 结正、反偏时,多数载流子和少数载流子所充当的角色及其性质。
为什么呢?这就导致了以上我们所说的结论:反偏时少数载流子反向通过 PN 结是很容易的,甚至比正偏时多数载流子正向通过 PN 结还要容易。
三极管的工作原理详解,图文案例,立马教你搞懂大家好,我是李工,希望大家多多支持我。
今天给大家讲一下三极管。
什么是三极管?三极管全称是“晶体三极管”,也被称作“晶体管”,是一种具有放大功能的半导体器件。
通常指本征半导体三极管,即BJT管。
典型的三极管由三层半导体材料,有助于连接到外部电路并承载电流的端子组成。
施加到晶体管的任何一对端子的电压或电流控制通过另一对端子的电流。
三极管实物图三极管有哪三极?•基极:用于激活晶体管。
(名字的来源,最早的点接触晶体管有两个点接触放置在基材上,而这种基材形成了底座连接。
)•集电极:三极管的正极。
(因为收集电荷载体)•发射极:三极管的负极。
(因为发射电荷载流子)三极管的分类三极管的应用十分广泛,种类繁多,分类方式也多种多样。
根据结构•NPN型三极管•PNP型三极管根据功率•小功率三极管•中功率三极管•大功率三极管根据工作频率•低频三极管•高频三极管根据封装形式•金属封装型•塑料封装型根据PN结材料锗三极管硅三极管除此之外,还有一些专用或特殊三极管三极管的工作原理这里主要讲一下PNP和NPN。
PNPPNP是一种BJT,其中一种n型材料被引入或放置在两种p型材料之间。
在这样的配置中,设备将控制电流的流动。
PNP晶体管由2个串联的晶体二极管组成。
二极管的右侧和左侧分别称为集电极-基极二极管和发射极-基极二极管。
NPNNPN中有一种 p 型材料存在于两种 n 型材料之间。
NPN晶体管基本上用于将弱信号放大为强信号。
在 NPN 晶体管中,电子从发射极区移动到集电极区,从而在晶体管中形成电流。
这种晶体管在电路中被广泛使用。
PNP和NPN 符号图三极管的3种工作状态分别是截止状态、放大状态、饱和状态。
接下来分享我在微信公众号看到的一种通俗易懂的讲法:三极管工作原理-截止状态三极管的截止状态,这应该是比较好理解的,当三极管的发射结反偏,集电结反偏时,三极管就会进入截止状态。
这就相当于一个关紧了的水龙头,水龙头里的水是流不出来的。
三极管电路讲解摘要:1.三极管的基本结构2.三极管的工作原理3.三极管的分类与命名4.三极管的电路应用5.三极管的发展与未来趋势正文:一、三极管的基本结构三极管,又称晶体管,是一种常见的半导体元器件。
它主要由三个区域组成:发射区、基区和集电区,这三个区域构成了三极管的基本结构。
发射区与集电区由P 型半导体制成,而基区由N 型半导体制成。
这种结构使得三极管具有单向导通的特性。
二、三极管的工作原理三极管的工作原理主要基于NPN 和PNP 两种结构。
在NPN 型三极管中,发射区与基区之间的电流(IB)控制着基区与集电区之间的电流(IC)。
具体来说,当发射区电流(IE)流过基区时,基区会形成一个导电通道,从而允许集电区的电流流过。
而在PNP 型三极管中,基区电流(IB)同样控制着发射区与集电区之间的电流(IC)。
三、三极管的分类与命名根据电流放大系数不同,三极管可以分为两类:NPN 型和PNP 型。
NPN 型三极管中,发射区电流(IE)流向基区,基区电流(IB)流向集电区;而在PNP 型三极管中,发射区电流(IE)从基区流向发射区,基区电流(IB)从集电区流向基区。
三极管的命名方式通常为“型号- 参数”,例如:3DG6-A,其中“3DG6”代表三极管的型号,“A”代表该三极管的参数。
四、三极管的电路应用三极管在电路设计中有着广泛的应用,如:放大电路、振荡电路、脉冲发生器、信号调制等。
其中,最典型的应用是放大电路。
三极管可以实现电流放大,从而将输入信号的电流放大到一定程度,以满足后续电路的需求。
此外,三极管还可以实现电压放大,使得输入信号的电压在输出端得到放大。
五、三极管的发展与未来趋势随着科技的发展,三极管在性能和功能上也得到了不断的提升。
从最初的单极型晶体管,到后来的双极型晶体管,再到现在的场效应晶体管,三极管在速度、功耗和集成度等方面都有了很大的改善。
三极管的基本知识讲解三极管的初步认识三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。
三极管有2 种类型,分别是PNP 型和NPN 型。
先来认识一下,如下图所示。
三极管一共有3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极e(emitter),剩下的一个引脚就是集电极c(collector)。
三极管的原理三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。
三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e 级和c 级之间就可以顺利导通。
也就是说,控制端在b 和e 之间,被控制端是e 和c 之间。
同理,NPN 型三极管的导通电压是b 极比e 极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e 极和c 极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
三极管的用法以上图为例介绍一下三极管的用法。
三极管基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。
如果P1.0 由我们的程序给一个高电平1,那么基极b 和发射极e 都是5V,也就是说e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。
超详细的晶体三极管原理讲解和应用分析,以水龙头比喻太恰当了什么是三极管?三极管,全称为半导体三极管、双极型晶体管或者晶体三极管,是一种控制电流的半导体器件。
其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
晶体三极管是一种三端器件,内部含有两个相距很近的PN结(发射结和集电结),两个PN结加上不同极性、不同大小的偏置电压时,晶体三极管呈现不同的特性和功能。
晶体三极管由于结构不同,可以分为NPN型三极管和PNP型三极管,NPN型三极管和PNP型三极管的逻辑符号如下图1所示。
图1 NPN型三极管和PNP型三极管逻辑符号三极管的三种工作状态是非常重要的,是无线电基础中的基础。
对此我是这样理解的。
无论是NPN型三极管还是PNP型三极管,当发射结加正向偏置电压,而集电结加反向偏置电压时,那么该三极管就工作在放大模式;而当其发射结和集电结都加正向偏置电压时,该三极管就工作在饱和模式;而当发射结和集电结同时加反向偏置电压时,那么该三极管就工作在截止模式。
为此我编了一句顺口溜:发正集反是放大;全正饱和全反截,希望对大家理解有用。
既然晶体三极管那么重要,那么我们改如何正确理解三极管的工作原理,并正确使用三极管呢?小何下面就跟大家一一分享。
三极管的工作原理三极管的放大原理如下图2所示,晶体管中大小与输入信号呈正比的输出信号可以认为是从电源来的,他们的输入信号从基级进入而从发射级出来,晶体管只是吸收此时输入信号的振幅信息,由电源重新产生输出信号,这就是放大的原理。
图2 三极管放大原理值得注意的是,对于三极管放大作用的理解,必须切记一点:根据能量守恒定律,能量不会无缘无故的产生,所以,三极管一定不会产生能量。
晶体管的内部工作原理就是对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源,使基极-发射极间电流的数十至数百倍(因晶体管种类而异)的电流在集电极与发射极之间流动。
三极管的基本知识讲解12三极管的初步认识3三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都4有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,5压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行6讲解。
三极管有 2 种类型,分别是 PNP 型和 NPN 型。
先来认识一下,如下图所示。
三极管一共有 3 个极,横向左侧的引脚叫做基极(base),78中间有一个箭头,一头连接基极,另外一头连接的是发射极 e(emitter),9剩下的一个引脚就是集电极 c(collector)。
101112三极管的原理13三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟14电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主15要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们16也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内 PNP,17箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。
三极管的用法18特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对19于PNP 而言,e 极电压只要高于 b 级 0.7V以上(硅三极管的PN结道导20通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管 e 级和c 级之间就可以顺利导通。
也就是说,控制端在 b 和 e 之间,被控制端2122是 e 和 c 之间。
同理,NPN 型三极管的导通电压是 b 极比 e 极高0.7V,总之是箭头的始端比末端高 0.7V 就可以导通三极管的 e 极和 c2324极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
25三极管的用法2627以上图为例介绍一下三极管的用法。
三极管基极通过一个 10K 的电28阻接到了单片机的一个 IO口上,假定是 P1.0,发射极直接接到 5V 的电源上,集电极接了一个 LED 小灯,并且串联了一个 1K 的限流电阻最终2930接到了电源负极 GND 上。
三极管的基本知识讲解三极管的初步认识三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较普遍,而锗管应用较少,以下以硅管为例进行讲解。
三极管有2 种类型,分别是PNP 型和NPN 型。
先来认识一下,如下图所示。
三极管一共有3 个极,横向左侧的引脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极e(emitter),剩下的一个引脚就是集电极c(collector)。
三极管的原理三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,电流控制。
三极管的用法特点,关键点在于b 极(基极)和e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于b 级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e 级和c 级之间就可以顺利导通。
也就是说,控制端在b 和e 之间,被控制端是e 和c 之间。
同理,NPN 型三极管的导通电压是b 极比e 极高0.7V,总之是箭头的始端比末端高0.7V就可以导通三极管的e 极和c 极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
三极管的用法以上图为例介绍一下三极管的用法。
三极管基极通过一个10K 的电阻接到了单片机的一个IO口上,假定是P1.0,发射极直接接到5V 的电源上,集电极接了一个LED 小灯,并且串联了一个1K 的限流电阻最终接到了电源负极GND 上。
如果P1.0 由我们的程序给一个高电平1,那么基极b 和发射极e 都是5V,也就是说e到b 不会产生一个0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。