七年级数学上册 第四章 一元一次方程 4.3 用一元一次
- 格式:doc
- 大小:125.01 KB
- 文档页数:14
学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。
2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步达标测评(附答案)一.选择题(共10小题,满分40分)1.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x元,根据题意可列出方程()A.0.7x﹣400=20%×400B.0.7x﹣400=20%×0.7xC.(1﹣20%)×0.7x=400D.0.7x=(1﹣20%)×4002.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱3.已知某商店有两个进价不同的计算器都卖了120元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元4.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=905.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.100元B.150元C.200元D.250元6.永辉超市同时售出两台冷暖空调,每台均卖990元,按成本计算,其中一台盈利10%,另一台亏本10%,则出售这两台空调永辉超市()A.不赔不赚B.赚20元C.亏20元D.赚90元7.某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%.则这单买卖是()A.不赚不亏B.亏了C.赚了D.无法确定8.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元9.某商场销售一款服装,每件标价150元,若以八折销售,仍可获利30元,则这款服装每件的进价为()A.90元B.96元C.120元D.126元10.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元二.填空题(共4小题,满分20分)11.某商场在“庆元旦”的活动中将某种服装打折销售,如果每件服装按标价的6折出售将亏10元,而按标价的9折出售将赚50元,则每件服装的标价是元.12.某商品标价为220元,若以八折出售,仍可获利10%,则该商品的进价是元.13.一个书包进价为60元,打八折销售后仍获利20%,这个书包原价为元.14.某种商品的标价为220元,为了吸引顾客,按9折出售,这时仍可盈利10%,则这种商品的进价是元.三.解答题(共6小题,满分60分)15.商场经销甲、乙两种商品,甲种商品每件售价60元,利润率为50%,乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2100元,求购进甲种商品多少件?16.一家服装店在换季时积压了一批服装,为了缓解资金的压力,决定打折销售,其中一条裤子的成本为80元,按标价五折出售将亏30元.(1)求这条裤子的标价是多少元?(2)另一件上衣按标价打九折出售,和这条裤子合计卖了230元,两件衣服恰好不赢不亏,求这件上衣的标价是多少元?17.某商铺购进甲、乙两种商品,其中乙商品件数比甲商品件数的2倍少45件,甲、乙两种商品的进价和售价如表(利润=售价﹣进价):甲乙进价(元/件)2030售价(元/件)2540(1)如何进货,进货价恰好是3450元?(2)如何进货,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为多少元?18.某公园门票价格规定如下:七年级两个班共101人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1207元,问:购票张数1﹣50张51﹣100张100张以上每张票的价格13元11元9元(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?19.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.20.某校计划添置20张办公桌和一批椅子(椅子不少于20把),现从A,B两家家具公司了解到:同一款式的产品价格相同,办公桌每张210元,椅子每把70元,A公司的优惠政策为:每买一张办公桌赠送一把椅子,B公司的优惠政策为:办公桌和椅子都实行8折优惠.①若到A公司买办公桌的同时买m把椅子,则应付款多少元?②若规定只能选择一家公司购买桌椅,什么情况到任一家公司购买付款一样多?③如果买办公桌的同时买30把椅子,并且可到A,B任一家公司购买,请你设计一种购买方案,使所付款额最少.参考答案一.选择题(共10小题,满分40分)1.解:设这件商品的标价为x元,根据题意得:0.7x﹣400=20%×400,故选:A.2.解:设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,y(1﹣20%)=200,解得,x=160,y=250,∴(200+200)﹣(160+250)=﹣10,∴这家商店这次交易亏了10元,故选:A.3.解:设盈利的进价是x元.120﹣x=20%x,解得x=100.设亏本的进价是y元.y﹣120=20%y,解得y=150.120+120﹣100﹣150=﹣10元.故亏损了10元.故选:C.4.解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选:A.5.解:设商品的标价是x元,根据题意得x﹣80%x=50,解得x=250,250×80%=200.他购买这件商品花了200元.故选:C.6.解:设盈利10%的这台空调的进价为x元,亏损10%的这台空调的进价为y元,由题意,得x(1+10%)=990,y(1﹣10%)=990,解得:x=900,y=1100,所以这次销售的进价为:900+1100=2000元,∵售价和为:990+990=1980元,利润为:1980﹣2000=﹣20元.∴出售这两台空调永辉超市亏20元.故选:C.7.解:设两种衣服的进价分别为a元、b元,则有:a(1+20%)=300,b(1﹣20%)=300,解得:a=250,b=375;∴赚了20%的衣服盈利了:300﹣250=50元,亏损了20%的衣服亏本了:375﹣300=75元;∴总共亏本了:75﹣50=25元,故选:B.8.解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.故选:C.9.解:设这款服装的进价是x元,150×0.8﹣x=30,x=90,进价是90元.故选:A.10.解:设两台电子琴的原价分别为x与y,则第一台可列方程(1+20%)•x=960,解得:x=800.比较可知,第一台赚了160元,第二台可列方程(1﹣20%)•y=960,解得:y=1200元,比较可知第二台亏了240元,两台一合则赔了80元.故选:D.二.填空题(共4小题,满分20分)11.解:设每件服装的标价是x元,可得:0.6x+10=0.9x﹣50,解得:x=200,答:每件服装的标价是200元;故答案是:200.12.解:设该商品的进价是x元,根据题意列方程得:220×0.8﹣x=0.1x,176﹣x=0.1x,x=160.答:该商品的进价是160元.故答案为:160.13.解:设这个书包的原价是x元.则依题意得0.8x=60(1+20%),解可得:x=90,即标价为90元/个.故答案为:90.14.解:设进价为x元,则:x+x×10%=220×0.9解得x=180.三.解答题(共6小题,满分60分)15.解:(1)设甲种商品的进价为x元,由题意,得,解得:x=40,经检验,x=40是原方程的解.∴甲商品的进价为40元.乙商品的利润率为:=60%.故答案为:40,60%;(2)设甲种商品购进y件,则乙种商品购进(50﹣y)件,由题意,得40y+50(50﹣y)=2100,解得:y=40,答:购进甲种商品40件.16.解:(1)设标价为x元,则0.5x=80﹣30.解得x=100.即标价为100元.(2)设这件上衣的标价为y元,则0.9y+50=230,解得y=200即这件上衣的标价是200元.17.解:(1)设购进甲商品x件,则购进乙商品(2x﹣45)件,由题意得::30(2x﹣45)+20x=3450,解得:x=60,则2x﹣45=120﹣45=75,答:购进甲商品60件,购进乙商品75件,进货价恰好是3450元;(2)设购进甲商品m件,购进乙商品(2m﹣45)件,由题意得:(25﹣20)m+(40﹣30)(2m﹣45)=30%[20m+30(2m﹣45)],解得:m=45,则2m﹣45=45,此时利润为:(25﹣20)×45+(40﹣30)×45=675(元),答:购进甲商品45件,购进乙商品45件,商铺销售完两种商品时获利恰好是进货价的30%,此时利润为675元.18.解:(1)设七年级一班有x人,13x+11(101﹣x)=1207,解得,x=48,∴101﹣x=53,答:七年级一班有48人,二班53人;(2)1207﹣101×9=1207﹣909=298(元),答:两个班联合起来购票可省298元;(3)一班按实际人数购票花费为:48×13=624(元),一班购买51张票的花费为:11×51=561(元),∵561<624,∴购买51张票更合算,答:如果一班单独组织去公园玩儿,购票51张更省钱.19.解:(1)设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000,x=52,∴92﹣x=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.20.解:①∵m≥20,∴A公司付款为20×210+(m﹣20)70=4200+70m﹣1400=70m+2800(元);②m≥20,B公司付款为:4200×0.8+0.8×70m=56m+3360(元);当70m+2800=56m+3360,解得m=40,答:当购40把椅子时两公司付款一样多.③当m=30时,第一种方案:A公司付款为70m+2800=70×30+2800=2100+2800=4900(元);第二种方案:B公司付款为56m+3360=56×30+3360=1680+3360=5040(元);第三种方案:到A公司买20张办公桌,用20×210=4200,赠20把椅子,还剩30﹣20=10把椅子,10把椅子到B公司买,用10×70×0.8=560,此时一共用560+4200=4760(元);∴第三种方案所付款额最少.。
苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)若甲、乙两校联合起来购买服装,则比各自购买服装共可以节省多少元?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学被调去参加“著名苏区三好学生”书法绘画比赛,不能参加演出,请你为这两所学校设计一种最省钱的购买服装方案.11.某租赁公司拥有100辆轿车,当每辆轿车的月租金为3000元时,可全部租出,当每辆轿车的月租金每增加50元时,未租出的轿车将会增加一辆,租出的轿车每辆每月公司需要保养费150元,未租出的轿车每辆每月公司需要保养费50元.(1)已知10月份每辆轿车的月租金为3600元,该月租出多少辆轿车?(2)已知11月份的保养费总开支为12900元,问该月租出了多少辆轿车?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点如果相遇,则相遇时的时间t=;相遇时在数轴上表示的数为;(3)A、B两点能否相距18个单位长度,如果能,求相距18个单位长度的时间t;如不能,请说明理由.13.“十一”期间人民商场回报顾客,实行“迎国庆,大酬宾”活动,具体要求如下:购物200以下不优惠,购物200~500元按9折优惠;购物500~1000元按8折优惠;1000元以上按7.5折优惠,活动期间某人两次购物分别用去168元和432元,如果改为一次性购物,那么可以比两次购物节省多少钱?14.为了节约用水,某市规定:每户居民每月用水不超过10立方米,按每立方米4元收费;超过10立方米,则超过部分按每立方米8元收费(1)小明家10月用水9立方米应交水费多少元?小强家10月用水11立方米应交水费多少元?(2)如果某户居民十月份缴纳水费72元,则该户居民十月份实际用水为立方米.15.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.(1)求每箱装多少个产品.(2)3台A型机器和2台B型机器一天能生产多少个产品?16.随着移动互联网的快速发展,共享单车在余姚的大街小巷随处看见,解决了很多人的交通出行问题,李老师早上骑单车上班,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑单车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?17.某学校组织安全知识竞赛,共设20道分值相同的选择题,每题必答,下表中记录了5位参赛选手的竞赛得分情况.(1)若一选手答对17题,得分.(2)从表中你发现:得分规则是什么?(3)用方程知识解答:若某位选手F得64分,则他答对了几道题?(4)参赛选手G说他得78分,你认为可能吗?为什么?18.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元?(时间按整月计算)19.A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?20.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?21.某校组织学生走上街头宜传雾霾的危害,他们要复印一部分宣传资料(不少于20页),校门口有两家复印店甲店收费标准:复印页数不超过20时,每页收费0.2元,超过20时,超过部分每页收费将为0.09元乙店收费标准:不论复印多少页,每页收费01元(1)复印页数为多少时,两家店收费一样;(2)请你帮他们分析去哪家店比较合算.22.列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?23.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.24.甲、乙两车同时从A城去B城,甲车每小时行35千米,乙车每小时行40千米,结果乙比甲提前半小时到达B城.问A、B两城间的路程有多少千米?25.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?26.蒙城某中学组织学生去参加体检,队伍以8千米/小时的速度前进,在队尾的校长让一名学生跑步到队伍的最前面找带队老师传达一个通知(通知时间忽略不计),然后立即返回队尾,这位学生的速度是12千米/小时,从队尾赶到排头又回到队尾共用了9分钟,求队伍的长为多少千米?27.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.28.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B 地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?29.甲、乙两人相距5千米,分别以2千米/时,4千米/时的速度相向而行,同时一只小狗以12千米/时的速度从甲处奔向乙处,遇到乙后立即掉头奔向甲,遇甲后又奔向乙…直到甲、乙相遇,求小狗所走的路程.(用方程解)30.节约用水保护水资源人人有责,为了节约用水自来水公司对自来水的收费标准作如下规定:每月每户用水不超过8吨的部分,按2.5元/吨收费;超过8吨的部分每吨加收1.5元.(1)若某用户5月份用水12吨,问应交水费多少元?(2)若某用户6月份交水费48元,问该用户6月份用水多少吨?(3)若某用户7月用水a吨,问应交水费多少元(用含a的代数式表示)?苏科新版七年级上学期《4.3 用一元一次方程解决问题》同步练习卷参考答案与试题解析一.解答题(共30小题)1.在暑假期间,小红、小兰等同学随家人一同游玩,看见景区门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(15人以上含15人):按成人票价六折优惠”.在购买门票时,小红与她爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”.小红:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”.问题:(1)小红他们一共去了几个成人,几个学生?(2)请你帮小红算一算,用哪种方式买票更省钱?说明理由.【分析】(1)根据题意分别表示出成人与学生所付金额,进而得出方程求出答案;(2)直接求出购买15张门票所付钱数,进而比较得出答案.【解答】解:(1)设成年人去了x人,则学生去了(12﹣x)人,由题意得:35x+35×50%(12﹣x)=350,解得x=8,因此:成人去了8人,学生去了4人.(2)购买团票更省钱,∵35×60%×15=315<350,∴应采用购买团体票的方式才更省钱.【点评】此题主要考查了一元一次方程的应用,根据题意表示成人与学生购票所要付的钱数是解题关键.2.小美为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小美家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用;(注:费用=灯的售价+电费)(2)当照明时间是多少时,使用两种灯的费用一样多;并请直接写出:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低.(3)小美想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.【分析】(1)根据“费用=灯的售价+电费”直接列出函数关系式即可;(2)根据“使用两种灯的费用一样多”可列方程49+0.0045x=18+0.02x,求出即可;根据“白炽灯费用低”,“节能灯费用低”列不等式求解即可;(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯费用是67+0.0045×2800+0.02×200=83.6元.通过比较可得费用最低的方案.【解答】解:(1)∵0.009千瓦×0.5元/千瓦=0.0045元,0.04千瓦×0.5元/千瓦=0.02元,∴用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元;(2)①设照明时间是x小时,由题意,得49+0.0045x=18+0.02x,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多.②当节能灯费用>白炽灯费用时,49+0.0045x>18+0.02x,解得:x<2000.所以当照明时间<2000小时时,选用白炽灯费用低.当节能灯费用<白炽灯费用时,49+0.0045x<18+0.02x,解得:x>2000.所以当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.即照明时间大于2000小时且小于或等于2800小时,选用节能灯费用低.(3)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+0.0045×2800+0.02×200=83.6元.综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.【点评】此题主要考查了一元一次方程的应用以及列代数式,以及考查学生对方案的设计与选择,通过数学计算来研究现实生活中遇到的数学问题,体会数学分类讨论思想在解题中的应用.3.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定a吨以下的收费标准相同;规定a吨以上的超过部分收费标准相同,以下是小明家1﹣4月份用水量和交费情况:根据表格中提供的信息,回答以下问题:(1)求出规定吨数a;(2)若小明家6月份缴水费29元,则6月份用水多少吨?【分析】(1)根据1、2、3月份的条件,当用水量不超过10吨时,每吨的收费2元.根据3月份的条件,用水12吨,其中10吨应交20元,则超过的2吨收费6元,则超出10吨的部分每吨收费3元.(2)题中存在的相等关系是:10吨的费用20元+超过部分的费用=29元【解答】解:(1)从表中可以看出规定用水量不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)设小明家6月份用水x吨,29>10×2,所以x>10.所以,10×2+(x﹣10)×3=29,解得:x=13.小明家7月份用水13吨.【点评】本题主要考查一元一次方程的应用,正确理解收费标准,列出符合题意的一元一次方程是解决本题的关键.4.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?【分析】(1)小张比小李多走10千米,设经过t小时相遇,则根据他们走的路程相等列出等式,即可求出t;(2)设小张的车速为x,则根据两人相遇时所走的路程相等,可列出等式,即可求得小张的车速.【解答】解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有:+=5+10,解得x=18千米.故小张的车速为18千米每小时.【点评】本题考查了一元一次方程的应用,难度一般,关键要根据题意找出等量关系,根据等量关系列出等式.5.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15cm,各装10cm高的水,下表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没有溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少cm?【分析】设后来甲、乙、丙三杯内水的高度为3x、4x、5x,利用水的体积不变进而表示出三杯水的体积,进而得出方程求出即可【解答】解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4(cm).答:甲杯内水的高度变为3×2.4=7.2(cm).【点评】此题主要考查了一元一次方程的应用,根据题意表示出水的体积是解题关键.7.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元.根据题意得2(x+50)=3x.解得x=100.x+50=150.答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:100a+14000(元);到乙商场购买所花的费用为:80a+15000(元);(3)由100a+14000=80a+15000,得:a=50,所以:①当a=50时,两家花费一样;②当a<50时,到甲处购买更合算;③当a>50时,到乙处购买更合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.2014年元旦将至,“春风电器”商场一款“格力”电暖器的原价为每件900元,为了参与市场竞争,商场按原价打9折后再让利40元销售,此时仍可获利10%,此商品的进价是多少元?【分析】设商品的进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.【解答】解:设商品的进价为x元,依题意得:900×90%﹣40﹣x=10%x,整理,得770﹣x=0.1x解之得:x=700答:此商品的进价是700元.【点评】考查了一元一次方程的应用.应识记有关利润的公式:利润=销售价﹣成本价.9.某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为140元,某顾客参加活动购买甲、乙各一件,共付100元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中销售甲、乙两种商品各一件是盈利还是亏损了?如果是盈利,盈利了多少元;如果是亏损,亏损了多少元.【分析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据优惠后购买甲、乙各一件共需100元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入100﹣a﹣b中即可找出结论.【解答】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(140﹣x)元,根据题意得:(1﹣40%)x+(1﹣20%)(140﹣x)=100,解得:x=60,∴140﹣x=80.答:甲商品原销售单价为60元,乙商品的原销售单价为80元.(2)设甲商品的进价为a元/件,乙商品的进价为b元/件,根据题意得:(1﹣25%)a=(1﹣40%)×60,(1+25%)b=(1﹣20%)×80,解得:a=48,b=51.2,∴100﹣a﹣b=100﹣48﹣51.2=0.8.答:商场在这次促销活动中盈利,盈利了0.8元【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.为表彰县“著名苏区三好学生”,县中小学统一组织文艺汇演.甲、乙两校共92名学生,(其中甲校人数多于乙校人数,且甲校人数不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.。
苏科版七年级数学上册《用一元一次方程解决问题》专题:动点问题1. 已知:如图,在数轴上,点O为原点,点A、点B所表示的数分别为a、b,且满足|a+40|+(b-20=0;(1)直接写出a、b的值;a=_____;b=_____.(2)动点P从点A出发,以每秒m个单位长度的速度向点B匀速运动,同时动点Q从点B 出发,以每秒2m个单位长度的速度在点B和原点之间做匀速往返运动,当运动时间为7秒时,点P在点A和原点之间,恰好满足点P到原点的距离是点Q到原点距离的一半,求m的值;(3)在(2)的条件下,当点P和点Q第一次相遇后,速度均变为原来的2倍,点P运动到点B后停止运动,点P停止运动后,点Q运动到原点也停止运动,t为何值时,P、Q两点间的距离为5个单位长度?2.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为_____,_____,PQ=_____.(2)当PQ=8时,求t的值.3.如图,在数轴上,点O为原点,点A、点B是数轴上的两点,已知点A所对应的数是x,点B对应的数是y,且x、y满足|x+4|+(y-10=0.(1)点A所对应的数是_____,点B所对应的数是_____.(2)若动点P从点A出发以每秒6个单位长度向右运动,动点Q从点B出发以每秒2个单位长度向点A运动,到达A点即停止运动,P、Q同时出发,且Q停止运动时,P也随之停止运动,求经过多少秒时,P、Q第一次相距6个单位长度?(3)在(2)的条件下,整个运动过程中,设运动时间为t秒,若AP的中点为M,BQ的中点为N,当t为何值时,BM+AN=2PB?4.如图,点A,B都在数轴上,点O为原点,设点A、B表示的数分别是a、b,且a与b满足|a+8|+(b-2=0.动点P从点A出发,沿数轴向左以每秒2个单位长度的速度运动,动点Q从点B出发,沿数轴向左以每秒3个单位长度的速度运动,已知点P与点Q同时出发,且P、Q两点重合后同时停止运动,设点P的运动时间为t秒.(1)直接写出a、b的值和线段AB的长,a=_____,b=_____,AB=_____;(2)当PQ的长为5时,求t的值;(3)若点M为PQ的中点,点N为BQ的中点,是否存在t值,使MN=3BO,若存在,请求出t的值;若不存在,请说明理由.5.已知:如图,点A、点B为数轴上两点,点A表示的数为a,点B表示的数为b,a与b满足|a+4|+(b-8=0.动点P从点A出发,以2个单位长度/秒的速度沿数轴向右运动,同时动点Q从点B出发,以1个单位长度/秒的速度沿数轴向右运动.(1)直接写出a、b的值,a=_____,b=_____;(2)设点P的运动时间为t秒,当t为何值时,P、Q两点相距20个单位长度;(3)若在运动过程中,动点Q始终保持原速度原方向,动点P到达原点时,立即以原来的速度向相反的方向运动.设点P的运动时间为t秒,当t为何值时,原点O分线段PQ 为1:3两部分.6.如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____;当t=1时,点P所表示的数是_____;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?7.在数轴上,若A、B、C三点满足AC=2CB,则称C是线段AB的相关点.当点C在线段AB 上时,称C为线段AB的内相关点,当点C在线段AB延长线上时,称C为线段AB的外相关点.如图1,当A对应的数为5,B对应的数为2时,则表示数3的点C是线段AB的内相关点,表示数-1的点D是线段AB的外相关点.(1)如图2,A、B表示的数分别为5和-1,则线段AB的内相关点表示的数为_____,线段AB的外相关点表示的数为_____.(2)在(1)的条件下,点P、点Q分别从A点、B点同时出发,点P、点Q分别以3个单位/秒和2个单位/秒的速度向右运动,运动时间为t秒.①当PQ=7时,求t值.②设线段PQ的内相关点为M,外相关点为N.直接写出M、N所对应的数为相反数时t的取值.8. 如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_____,点P表示的数_____(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的条件下,当点P,点Q之间的距离是3时,运动时间是多少秒?9.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距5个单位长度?10. 已知数轴上两点A、B对应的数分别为-3、5,点P为数轴上一动点,且点P对应的数为x.(1)若点P到点A、点B的距离相等,则点P对应的数为_____.(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和1个单位长度/秒的速度同时向右运动,点P以3个单位长度/秒的速度同时从O点向左运动,当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?11. 如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P 从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0).(1)填空:数轴上点B表示的数为_____,点P表示的数为_____(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R同时出发,经过多长时间,P,R之间的距离为2个单位长度?12.数轴是我们进入七年级后研究的一个很重要的数学工具,它不但让我们在数轴上表示所有的有理数,让数变得具体而形象,还帮助我们理解了相反数和绝对值;当然,数轴也可以解决一些实际问题:小华家,小明家,学校在一条东西的大街上,小华家在学校的东面距学校500米,小明家在学校的西面距学校300米.(1)画出如图的数轴(学校为原点,小华家为A点,小明家为B点),数轴的单位长度为实际的_____米.(2)列算式表示小华与小明家之间的距离.(3)周末小明自西向东,小华自东向西出去玩,他们每分钟都走80米,问几分钟后两人相遇?相遇地点在学校的哪边?在数轴上用点C表示出来.13. 已知,如图A,B分别为数轴上的两点,点A对应的数是-18,点B对应的数为20.(1)请直接写出线段AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,在数轴上以3个单位/秒的速度向左运动.请解答下面问题:①试求出运动15秒时蚂蚁P到点A的距离.②直接写出运动多少秒时P到B的距离是P到A的距离的2倍,并直接写出P点所对应的数.14.如图,A,B两点在数轴上对应的有理数分别为a,b,|a|=10,a+b=80,->0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.设两只电子蚂蚁在数轴上的点C相遇.①求出点C对应的数是多少?②若相遇后,电子蚂蚁P继续向前运动,电子蚂蚁Q则以原来2倍的速度在BC之间来回运动,求两只电子蚂蚁第二次相遇时对应的数是多少?15.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足a+5是最大的负整数,b-3是绝对值最小的有理数.点C在点A右侧,到点A的距离是2个单位长度.(1)数轴上,点B表示的数是_____,点C表示的数是_____.(2)点P、Q为数轴上两个动点,点P从A点出发速度为每秒1个单位长度,点Q从B点出发速度为每秒2个单位长度.若P、Q两点同时出发,相向而行,运动时间为t秒.求当t为何值时,点P与点Q之间的距离是3个单位长度?(3)在(2)的条件下,在点P、Q运动的过程中,是否存在t值,使点Q到点A、点B、点C的距离之和为15?若存在,求出t值,并直接写出此时点P在数轴上所表示的数;若不存在,请说明理由.16. 已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a-b|+(a-4=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.17.如图,数轴上点A,B对应的数分别为a,b,并且|a+4|+(b-1=0,点O是原点.(1)a=_____,b=_____;(2)点A,B沿数轴同时出发向右匀速运动,点A的速度为3个单位长度/秒,点B的速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值.18.如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P与点B重合时t的值;(3)①点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);②点P由点A到点B的运动过程中,点P表示的有理数是多少(用含t的代数式表示);(4)当点P表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t的值.。
一题多变 拓宽思路学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他两从同一起点沿跑道的同一方向同时出发,5分钟后小华第一次追上了小红,求他二人的跑步速度.分析:本题中的相等关系为:小华的行程-小红的行程=400米.解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意得,得4005355=-⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.【评注】此题属于环形行程中同时同地同方向运动类题。
解这类题常用的相等关系为:快者的行程-慢者的行程=跑道周长.拓展一:学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他们从同一起点沿跑道方向背向同时出发,45分钟后小华第一次与小红相遇,求他二人的跑步速度. 分析:本题中的相等关系为:小华的行程+小红的行程=400米. 解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意,得400453545=+⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.评注:此题属于环形行程中同时同地背向运动类题。
解这类题常用的相等关系为:两者的行程之和=跑道周长.拓展二:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小红在小华的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=100米.解:设x 分钟后小华第一次与小红相遇. 由题意,得10012012035=-⨯x x解得x=45 答:经过45分钟后小华第一次与小红相遇 拓展三:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小华在小红的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=400米-100米解:设x 分钟后小华第一次与小红相遇 由题意,得10040012012035-=-⨯x x 解得x=415 答:经过415分钟后小华第一次与小红相遇 【评注】此题属于环形行程中同时异地同向运动类题,解这类题常用的相等关系:①若慢者在前,则为 快者的行程-慢者的行程=他们之间的距离;②若快者在前,则为快者的行程-慢者的行程=跑道周长-他们之间的距离.。
课题:4.3用一元一次方程解决问题(5)审核:初一数学组课型:新授课班级姓名日期【学习目标】基本目标:能利用表格或圆形示意图作为建模策略,分析工程问题中的数量关系列方程解决问题;提高目标:利用利用表格或圆形示意图分析问题中的数量关系,列方程解决问题;【重点难点】重点:利用表格或圆形示意图,分析工程问题中的数量关系列方程解决问题;难点:如何画示意图来反映问题中的数量关系.【预习导航】1.知识准备:(1)工程或工作问题中常见的数量有哪几个?它们有什么关系?2.一项工程,甲单独做20天完成,乙单独做30天完成,甲单独做5天后,余下的部分由甲、乙合作,需要几天完成.分析:本题可以把工作总量看作_______,则甲的工作效率为_______,乙的工作效率为______ 相等关系:_______________________________________________________解:……【课堂导学】问题1:一件工作,甲单独做20h完成,乙单独做12h完成,则:(1)甲每小时完成全部工作的;乙每小时完成全部工作的;(2)两人合做时,1小时完成全部工作量的;(3)甲在m小时内完成全部工作量的;(4)乙在m小时内完成全部工作量的;(5)甲、乙合做m小时完成的工作量为 .2.例题1:将一批会计报表输入电脑,甲单独做需20小时完成,乙单独做需12小时完成.现在先由甲独做4小时,剩下的部分由甲、乙合做完成,甲、乙两人合做的时间是多少?分析:本题可以列表分析或画环形示意图分析,请试试看.解:【课堂检测】1.某项工程由甲队单独做需18天完成,由乙队做只需甲队的一半时间完成,设两队合作需x天完成,则可得方程()A.x=+91181B.1)91181(=+xC.x=+361181D.1)361181(=+x2.某部书稿,甲、乙两个打字员一起打10天可以完成,若由甲单独打需14天完成。
现两人合打4天后,余下的书稿由乙单独打,设乙还需要x天才能完成,则列方程为____________ 。
数学学科第四章第3节4.3《用一元一次方程解决问题4》学讲预案一、自主先学在行程问题中,速度、时间、路程三者之间的关系:.二、合作助学5倍,他们从同一起点沿跑道的同一方向同时出发,5min后小红问题4 运动场环形跑道周长400m,小红跑步的速度是爷爷的3第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?分析:这个问题中数量之间的相等关系是:的路程-的路程=400m.可以列出表格:速度∕(m∕min)时间∕min 路程∕m爷爷x 5小红 5也可画如下线形示意图:解:议一议:如果小红与爷爷相遇后立即转身沿相反方向跑,那么几分钟后小红再次与爷爷相遇?三、拓展导学1.甲、乙两站相距240千米,一列慢车由甲站开出,每小时行驶80千米;同时,一列快车由乙站开出,,每小时行驶120千米.两车同向而行时,快车在慢车的后面,经过几小时快车可以追上慢车?2. 甲、乙两站相距60千米,一列快车从甲站开出,每小时行90千米;一列慢车从乙站开出,每小时行60千米,问:两车相向而行,同时开出多少小时后相遇?四、检测促学3. 一队学生从学校步行去博物馆,他们以5km/h的速度行进24min后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍.这名教师从出发到途中与学生队伍会合用了多少时间?4、某人沿着相同的路径上山、下山共用了2h.如果上山速度为3km/h,下山速度为5km/h,那么这条山路长是多少?5、一艘船从甲码头到乙码头顺流行驶用了2小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度为3千米/小时,求船在静水中的速度?五、反思悟学6、列方程解决下列问题:(1)一列火车进入长300m的隧道,从进入隧道到完全离开需20s,火车完全在隧道的时间是10s,求火车长.(2)甲、乙两列火车的长为144m和180m,甲车比乙车每秒多行4m.两列火车相向而行,从相遇到全部错开需9s,问两车的速度各是多少?专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.332 12=16≠13,所以x不能取4;当x=6时,摸出的两个小球上数字之和为9的概率是13.(2)当x为4时,数字和为9的概率为。
用一元一次方程解决问题(1)一、情境引入数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.二、问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料 m3,做一条桌腿需要木料 m3.用 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?通过问题1的研究,你能概括出用一元一次方程解决问题的一般思路吗?三、思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按元收费;如果超过15立方米,超过部分按每立方米元收费,其余仍按每立方米元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费元,求该户一月份用水量.四、课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了元.已知每封信的邮费为元,每张明信片的邮费为元.他寄了多少张明信片?3.一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?4.某人从甲地到乙地,全程的12 乘车,全程的13乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?用一元一次方程解决问题(2)一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:(1)找出问题中的已知数量,并填入下表;(2)设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.二、议一议:在问题2中,如果设橘子买了x千克,可以列出怎样的方程?三、数学运用例1 学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:等量关系是:.例2 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:课堂巩固1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?3.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的2,求这个课外活动小组的人数.34.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的倍,求这两支蜡烛原来的高度.用一元一次方程解决问题(3)例题讲解:问题3 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?说明:请学生尝试分析问题中的等量关系.思考1:如何把问题中的等量关系的分析过程直观地展示出来?设该小组共有x人.(1)如果每人做5个“中国结”,那么共做了个,比计划个.课堂练习:1、将一堆糖果分给幼儿园某班的小朋友,如果每人分2颗,那么就多8颗,如果每人分3颗,那么就少12颗,这个班共有多少名小朋友?2、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?3、某汽车队运送一批货物,每辆汽车装4t还剩下8t未装,每辆汽车装就恰好装完。
苏教版七年级上册数学 第4章 一元一次方程4.3 用一元一次方程解决问题第5课时 用一元一次方程解决问题(5)1.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若着设甲、乙共用x 天完成,则符合题意的是( ) A.140153015=+-x B.140153015=++x C. 1403015=++x x D.1301540=-+x x 2.有一个水池,只打开进水管,2 h 可把空水池注满;只打开出水管,3 h 可把满池水放空.若两管同时打开,则把空水池注满到水池的65需要的时间是( ) A.3h B.4h C.5h D.6h3.(2019秋・贵阳白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要________ 天才能完成该工程.4.为进一步缓解城东干道交通拥堵现象,市政府决定修建一条高架道路,为使工程能提前3个月完成,施工单位增加了机械设备,将原定的工作效率提高了20%.则原计划完成这项工程需要____________个月.5.(2019秋・哈尔滨道里区校级月考)整理一批图书,如果一个人单独整理需要30小时,现在先安排一部分人用1小时整理,随后又安排了6人和他们一起又整理了2小时,恰好整理完成假设每个人的工作效率相同,先安排整理的人员有多少人?6.一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独做需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?7.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时,若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?( )A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分8.甲、乙两人完成一项工作,甲先做了3天,然后乙加入一起做,完成剩下的工作,设工作总量为1,工作进度如下表,则完成这项工作共需( )A.9天B.10天C.11天D.12天9.(2019秋・哈尔滨南岗区校级月考)有9人14天完成了一件工作的53,而剩下的工作必须要在4天内完成,则需增加工作效率相同的人数是________人.10.一项工程,甲独做50小时完成,乙独做30小时完成,现在甲先做1小时,然后乙做2小时,再由甲做3小时,接着乙做4小时……两人如此交替工作,完成任务共需__________ 小时.11.某水池中有甲、乙两个进水管和丙出水管,若单独开甲水管,则24分钟可注满一池水,若单独开乙水管,则40分钟可注满一池水,若单独开丙水管,则1小时可排光一池水.现水池中原有51池水,先开乙水管10分钟,不关闭乙水管的情况下,再同时打开甲、丙两水管,问:再经过多长时间后,水池中的水开始溢出?12.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请向甲、乙两工程队合修需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度地节省资金.(时间按整月计算)13.(绍兴中考题)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入__________分钟的水量后,甲与乙的水位高度之差是0.5cm.14.某中学举行数学竞赛,计划用A ,B 两台复印机复印试卷.如果单独用A 机器需要90分钟印完,如果单独用B 机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)若两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B 复印机出了故障,暂时不能复印,此时离发卷还有13分钟.请你计算一下,如果由A 复印机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B 复印机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?。
4.3 用一元一次方程解决问题(4)学习目标:1.探索现实生活中的实际问题和变化规律,借助图表和线形图,用方程进行处理,进而让学生初步体验方程的作用;2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想;3. 感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。
学习重难点:运用图表和线形图,寻找行程类问题相等关系,并能用方程来解决实际问题。
一、创设情境:若A、B两站间的路程为500km, 甲速20km/h,乙速为30km/h,(1)甲乙两车分别从A、B两地同时出发,相向而行,几小时后两车相遇?(2) 甲、乙两车分别从A、B两地出发,快车先开出30分钟,两车相向而行,慢车行驶了多少小时两车相遇?(3)甲、乙两车分别从A、B两地同时出发,相向而行,问经过多少小时他们相距100km?(4)甲、乙两车分别从A、B两地同时出发,同向而行,问经过多少小时他们相距100km?思考尝试:(1)上述问题中,可以用列表和画线形示意图的方法来分析,动手试试看(2)你能写出每一个问题相等关系吗?能根据相等关系列出方程吗?试一试。
二、新知探索:例1.运动场跑道400m ,小红跑步的速度是爷爷的5/3倍,他们从同一起点沿跑道的同一方向同时出发,5分钟后小红第一次追上了爷爷。
你知道他们的跑步速度吗?(1)几分钟后小红与爷爷第二次相遇?(2)如果小红追上爷爷后立即转身沿相反方向跑,几分钟后小红又一次与爷爷相遇?分析:(一)思考问题:(1)小红与爷爷所用的时间什么关系?(2)小红与爷爷起跑后路程上发生什么变化?(3)小红第一次追上爷爷说明什么?(二)请你用表格分析该题中量之间的关系。
(三)当小红第一次追上爷爷时,他们所跑的路程可以用线段示意图表示或环形图表示,动手画画看:解:课本P109。
练习:1.甲乙两地相距120千米,快车每小时走72千米,慢车每小时走48千米,慢车在前,快车在后,若两车同时出发,快车几小时追上慢车?min /m 速度 时间/min 路程/min 爷爷x 5 小红 52.某人沿着相同的路径上山、下山共需2h.如果上山速度为3km/h,下山速度为5km/h,这条山路长是多少?例2.旅游者游览某水路风景区,乘坐摩托艇顺水而下,然后返回登艇处,水流速度是2千米/小时,摩托艇在静水中的速度是18千米/小时,为了使游览时间不超过3小时,旅游者驶出多远就应回头?例3.(1)一列火车进入长300m的隧道,从进入隧道到完全离开需20s,火车完全在隧道的时间是10s,求火车长。
课时练:4.3 用一元一次方程解决问题(四)1.一个修路队修一条路,九月份前13天共修2230米,后17天平均每天修160米,九月份平均每天修多少米?2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的式子表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)在(2)的条件下,当点P,点Q之间的距离是3时,运动时间是多少秒?3.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?4.某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时,按团队人数分段定价售票,10人(含10人)以下按原价售票,10人以上超过的部分游客打8折购票,其他人按原价购票.(1)设某旅游团游客人数为x人,非节假日购票款为y1元,节假日购票款为y2元,则y 1=;当0<x≤10时,y2=,当x>10时,y2=.(2)阳光旅行社于今年5月1日(节假日)组织A团,5月10日(非节假日)组织B 团到该景区旅游,两次共付门票款1900元,已知A、B两个团游客共计50人,问A、B 两个团各有游客多少人?5.用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?6.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?7.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?8.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90 超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)9.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?10.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.参考答案1.解:设九月份平均每天修x米,依题意有30x=2230+160×17,解得x=165.故九月份平均每天修165米.2.解:(1)∵点A表示的数为8,B在A点左边,AB=14,∴点B表示的数是8﹣14=﹣6,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣6,8﹣5t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=14,解得:x=7,∴点P运动7秒时追上点Q;(3)设经过t秒,点P,点Q之间的距离是3,由题意可得:|8﹣5t﹣(﹣6﹣3t)|=3,解得:t=或,答:经过或秒,点P,点Q之间的距离是3.3.解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人.4.解:(1)设某旅游团游客人数为x人,非节假日购票款为y1元,节假日购票款为y2元,可得:y 1=30x ;当0<x ≤10时,y 2=50x ,当x >10时,y 2=50×0.8×(x ﹣10)+50×10=40x +100;故答案为:30x ;50x ;40x +100.(2)设A 团游客m 人,则B 团游客有(50﹣m )人,根据题意可得: 当0<m ≤10时,有50m +30(50﹣m )=1900, 解得:m =20,∵20>10,与假设不符,故舍去;当m >10时,有40m +100+30(50﹣m )=1900, 解得:m =30, ∴50﹣m =20,所以A 、B 两个团各有游客分别为30人,20人.5.解:设B 型机器一天生产x 个产品,则A 型机器一天生产(x +1)个产品, 由题意得,=,解得:x =19, 7x ﹣1=132, 132÷11=12(个). 答:每箱装12个产品.6.解:(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本, 依题意,得:3(2x +20)+2x =460, 解得:x =50, ∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本. (2)460﹣3×120×0.8﹣2×50×0.9=82(元). 答:学校此次可以节省82元钱.7.解:设每个女生平均买x 个气球,则每个男生平均买(x ﹣1)个气球, 由题意可得:×16×x ﹣1=23×(x ﹣1)解得:x =2,答:每个女生平均买2个气球.8.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.9.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.10.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.。
2021-2022学年苏科版七年级数学上册《4.3用一元一次方程解决问题》同步练习题(附答案)1.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为()A.80元B.85元C.90元D.95元2.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.323.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元4.一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+40%)x×90%=x﹣38B.(1+40%)x×90%=x+38C.(1+40%x)×90%=x﹣38D.(1+40%x)×90%=x+385.小天使童装店一件童装标价80元,在促销活动中,该件童装按标价的6折销售,仍可获利20%,则这种童装每件的进价为()元.A.30B.40C.50D.606.某商品的标价为300元,打六折销售后获利50元,则该商品进价为()A.120元B.130元C.140元D.150元7.小明在深圳书城会员日当天购买了一本8折的图书,节约了17.2元,那么这本图书的原价是()A.86元B.68.8元C.18元D.21.5元8.某商品的进价为200元,标价为300元,打x折销售时后仍获利5%,则x为()A.7B.6C.5D.49.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是()A.100元B.105元C.110元D.115元10.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折11.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A.赚了10元B.亏了10元C.赚了20元D.亏了20元12.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.14013.一件上衣按成本价提高50%后,以105元售出,则这件上衣的利润为()A.20元B.25元C.30元D.35元14.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元15.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为元.16.某商场把进价为160元的商品按照8折出售,仍可获利10%,则该商品的标价为元.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为元.18.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为元.19.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.20.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.21.2020年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书籍原价是500元,实际付款为元;(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?22.疫情后为了复苏经济,龙岗区举办了“春暖龙城,约惠龙岗”的促消费活动,该活动拿出1.1亿元,针对全区零售,餐饮,购车等领域出台优惠政策.为配合区的经济复苏政策,龙岗天虹超市同时推出了如下促销活动:龙岗天虹超市促销活动方案:①购物不足500元优惠15%(打8.5折);②超过500元,其中500元优惠15%(打8.5折),超过部分优惠20%(打8折).(1)小哲在促销活动时购买了原价为200元商品,他实际应支付多少元?(2)小哲在第一次购物后,在“龙岗发布”微信公众号中参与摇号抢到了一张满300减100的购物券(即微信支付300元以上自动减100元),又到龙岗天虹超市去购物,用微信实际支付了381元,他购买了原价多少元的商品?23.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店较省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?24.已知甲商品进价40元/件,利润率50%:乙商品进价50元/件,售价80元.(1)甲商品售价为元/件;(2)若同时采购甲、乙商品共50件,总进价2100元,求采购甲商品的件数;(3)元旦期间,针对甲、乙商品进行如下优惠活动:一次性购物总金额优惠措施少于等于450元无超过450元,但不超过600元9折超过600元其中600元部分8.2折,超过600元部分3折佳佳一次性购乙商品若干件,实付504元,求佳佳购乙商品的件数.25.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?26.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案1.解:设该商品的进货价为x元,根据题意列方程得x+20%•x=120×90%,解得x=90.故选:C.2.解:设原价为x元,根据题意列方程得:x×(1+30%)×80%=416解得x=400,416﹣400=16(元).答:这件商品卖出后获得利润16元.故选:A.3.解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.4.解:设这件夹克衫的成本是x元,根据题意,列方程得:(1+40%)x×90%=x+38.故选:B.5.解:这种童装每件的进价为x元,依题意,得:80×60%﹣x=20%x,解得:x=40.故选:B.6.解:设该商品进价为x元,依题意,得:300×0.6﹣x=50,解得:x=130.故选:B.7.解:设这本图书的原价是x元,依题意得:(1﹣0.8)x=17.2解得x=86.即:这本图书的原价是86元.故选:A.8.解:设商品是按标价的x折销售的,根据题意列方程得:(300×﹣200)÷200=5%,解得:x=7.则此商品是按标价的7折销售的.故选:A.9.解:设这种服装每件的成本价为x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本价为100元.10.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.11.解:设第一件衣服的进价为x元,第二件的进价为y元,根据题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴400﹣x﹣y=400﹣160﹣250=﹣10(元).答:商店在这次交易中亏了10元.故选:B.12.解:设标签上的价格为x元,根据题意得:0.7x=80×(1+5%),解得:x=120.故选:B.13.解:设成本为x元,由题意得:(1+50%)x=105,解得:x=70,105﹣70=35(元),故选:D.14.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.15.解:设这件运动服的原价为x元,由题意得:0.9x﹣0.7x=30,解得x=150.故答案为:150.16.解:设该商品的标价为x元,则80%x=160×(1+10%),所以0.8x=176,解得x=220.答:该商品的标价为220元.故答案为:220.17.解:设这种商品每件的进价为x元,根据题意得:110×80%﹣x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为:80.18.解:设彩电标价是x元,根据题意得0.9x﹣2400=20%•2400,解得x=3200(元).即:彩电标价是3200元.故答案是:3200.19.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:八.20.解:设标价是x元,根据题意有:0.8x=40(1+30%),解得:x=65.故标价为65元.故答案为:65.21.解:(1)由题意知,300×0.95+0.8(500﹣300)=445(元).故答案是:445;(2)设所购书籍的原价是x元,则x>300.根据题意得,300×0.95+0.8(x﹣300)=365,解得x=400.答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,300×0.95+0.8(b﹣300)+(600﹣b)=555,解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.22.解:(1)200×(1﹣15%)=170(元).故他实际应支付170元;(2)设他购买了原价x元的商品,依题意有500×(1﹣15%)+(1﹣20%)(x﹣500)﹣100=381,解得x=570.故他购买了原价570元的商品.23.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.24.解:(1)甲商品售价=40(1+50%)=60(元)故答案是:60;(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得佳佳在该商场购买乙种商品件7件或8件.25.解:(1)由题意知,300×0.95+0.8(a﹣300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600﹣b)元,由题意知,0.8b+45+(600﹣b)=555解得b=450,则600﹣b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.26.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.。
实际问题与一元一次方程列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一.列一元一次方程解应用题的一般步骤(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.二. 分类知能点与题目知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元? [分析]通过列表分析已知条件,找到等量关系式等量关系:商品利润率=商品利润/商品进价解:设标价是x 元,,100406060%80=- 解之:x=105 优惠价为),(8410510080%80元=⨯=x 例2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为x 元,80%X (1+40%)—x=15,x=125答:进价是125元。
1.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.60 (点拨:设标价为x 元,则x-50=50×20%)2.某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.180 (点拨:设商品的进价为x 元,则220×90%-x=10%x )3.某种商品若按标价的8折出售可获利20%,若按原标价出售,则可获利( )A .25%B .40%C .50%D .1C (点拨:设标价为x 元,进价为a 元,则80%x-a=20%a ,得x=32a ∴按原标价出售可获利32a a a-×100%=50%) 4.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( )A .赢利16.8元B .亏本3元C .赢利3元D .不赢不亏C (点拨:设进价分别为a 元,b 元,则 a-84=20%a ,得a=10584-b=40%b ,得b=60 ∴84×2-(a+b )=3,故赢利3元)5.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x 元,那么所列方程为( )A .45%×(1+80%)x-x=50B . 80%×(1+45%)x - x = 50C.x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 506.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.700元B.约733元C.约736元D.约856元7.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解:设至多打x折,根据题意有1200800800x×100%=5% 解得x=0.7=70%答:至多打7折出售.8.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电的原售价为x元,根据题意,有10[x(1+40%)×80%-x]=2700,x=2250答:每台彩电的原售价为2250元.9.某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?知能点2:方案选择问题10.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?解:方案一:获利140×4500=630000(元)方案二:获利15×6×7500+(140-15×6)×1000=725000(元)方案三:设精加工x吨,则粗加工(140-x)吨.依题意得140616x x-+=15 解得x=60获利60×7500+(140-60)×4500=810000(元)因为第三种获利最多,所以应选择方案三.11.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?解:(1)y1=0.2x+50,y2=0.4x.(2)由y1=y2得0.2x+50=0.4x,解得x=250.即当一个月内通话250分钟时,两种通话方式的费用相同.(3)由0.2x+50=120,解得x=350由0.4x+50=120,得x=300因为350>300故第一种通话方式比较合算.12.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72 解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x 解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.13.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.14.小刚为书房买灯。
现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。
假设两种灯的照明效果一样,使用寿命都可以达到2800小时。
已知小刚家所在地的电价是每千瓦时0.5元。
(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。
(费用=灯的售价+电费)(2)小刚想在这两种灯中选购一盏。
①当照明时间是多少时,使用两种灯的费用一样多?② 试用特殊值判断:照明时间在什么范围内,选用白炽灯费用低? 照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这种灯中选购两盏。
假定照明时间是3000小时,使用寿命都是2800小时。
请你设计一种费用最低的选灯照明方案,并说明理由。
答案:0.005x+49 0.02x+18 2000知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)(3)%,100⨯=本金每个期数内的利息利润 例1. 某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)[分析]等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为X ,依题意得方程250(1+X )=252.7, 解得X=0.0108 所以年利率为0.0108×2=0.0216答:银行的年利率是21.6%例2. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:(1)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。