矩阵论_第一章_线性空间和线性映射剖析
- 格式:ppt
- 大小:2.99 MB
- 文档页数:5
线性代数中的线性空间和线性映射线性代数是数学中重要的一门学科,它的研究范围包括向量空间、线性变换、矩阵论等多个方面。
其中,线性空间和线性映射是线性代数的重要概念,本文将从这两个方面入手,探讨它们的定义、性质及应用。
一、线性空间线性空间又称向量空间,是线性代数中的基本概念之一。
它是一个具有加法和数乘运算的集合,满足以下条件:1.对于任意两个向量,其和仍为向量;2.对于任意一个向量和任意一个标量,它们的积仍为向量;3.加法和数乘运算遵从结合律和分配律;4.存在一个零向量,满足加法运算返回自身。
线性空间的定义具有很强的普遍性,它可以适用于实数、复数、函数以及其他更广泛的对象集合。
下面举一个实数向量空间的例子。
考虑一个三维实数向量空间,它包含所有形如 $(x,y,z)$ 的三元组,其中 $x,y,z$ 均为实数。
我们可以定义向量的加法和数乘运算如下:$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1+x_2, y_1+y_2,z_1+z_2)$$$$k(x, y, z) = (kx, ky, kz)$$显然,这样定义的加法和数乘运算符合上述线性空间的定义,因此该三维实数向量空间是一个线性空间。
除了上述基本性质外,线性空间还有许多衍生的性质,如基和维数的概念等。
具体来说,一个线性空间的基是指它的极大线性无关组,而线性空间的维数是其基的元素个数。
这些概念在矩阵论等应用中有广泛的应用。
二、线性映射线性映射是一种特殊的函数,它将一个向量空间映射到另一个向量空间,并保持加法和数乘运算的线性性。
考虑两个向量空间 $V$ 和 $W$,一个从 $V$ 到 $W$ 的线性映射 $T$ 应该满足以下条件:1.对于任意向量 $u,v\in V$,有 $T(u+v) = T(u) + T(v)$;2.对于任意向量 $u\in V$ 和标量 $k$,有 $T(ku) = kT(u)$;3.存在一个零向量 $0$,满足 $T(0)=0$。
第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。
集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。
如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。
则有O x x =-+)(。
(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=;(8)恒等律 x x =1; [数域中一定有1] 则称V 为数域K 上的线性空间。
注意以下几点:1)线性空间是基于一定数域来的。
同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。
2)两种运算、八条性质。
数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。
3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。