第3讲(1)线性空间与线性映射
- 格式:pdf
- 大小:676.05 KB
- 文档页数:16
第一章 线性空间与线性映射线性空间是研究矩阵理论的重要基础,本章主要讨论线性空间及其子空间的性质、线性映射与矩阵的关系等。
§1.1 数 域定义1 设F 是至少包含两个数的数集,如果F b a ∈∀,均有ab b a ,±F b ba∈≠)0(,,则称F 是数域。
例1 全体实数构成实数域,记为R 。
全体复数构成复数域,记为C 。
全体有理数构成有理数域,记为Q 。
例2 全体整数不够成数域,因为对除法不封闭。
例3设{|,}F a a Q b Q =∈∈,证明F 是数域。
证明 ,F αβ∀∈,则1122,,,a b a b Q ∃∈,使得1122,a a αβ==,易证,αβαβ±,(0)F αββ≠∈。
例4 证明任何数域F 都包含有理数域。
证明 因为F 中至少包含两个不同元素,所以0,≠∈∃a F a ,由运算的封闭性知F aa∈=1,112,123,F +=+=∈ 121,132F -=--=-∈,所以F 包含了全体整数,又由除法封闭性知F 包含有理数域。
和号:∑∑∑∑=====∈n j mi j i m i nj ji j i a aF a 1111,§1.2 线 性 空 间在线性代数中n R 是n 维实向量空间,在本节中将此概念推广到一般向量空间。
定义1 设V 是一个非空集合,F 是一个数域。
在集合V 的元素之间定义一种称之为加法的运算,且V 关于加法封闭,即,,x y V ∀∈有唯一的V y x ∈+。
在F 与V 之间定义一种运算称之为数乘,即V x F ∈∈λ∀,有唯一确定的V x ∈λ=ω与之对应,如果以上两种运算满足以下八条运算规则,则称V 为数域F 上的线性空间,V 中元素也称为V 中的向量,也记)(F V V =。
V y x x y y x ∈∀+=+,.1V z y x z y x z y x ∈∀++=++,,)()(.2.3V θ∃∈使,x x x V θ+=∀∈,称θ为零元素,也记为0。
一. 线性映射上一节课研究了数域P 上线性空间的结构。
在许多数学问题和实际问题中起着重要作用的是线性空间到线性空间的映射,并且这些映射有一个共同点,即保持加法和数量乘法两种运算,我们称这样的映射为线性映射。
1.1线性映射的定义及其性质1.1.1 【定义】 设1V 、2V 是数域P 的两个线性空间,σ是1V 到2V 的一个映射,如果对1V 中任意两个向量α,β和任意数k P ∈,都有()()()σαβσασβ+=+,()()k k σασα=即能向量线性关系的不变性,则称σ是1V 到2V 的线性映射或线性算子。
上面两式所涉及到的加法和数量乘法是线性空间里边定义的加法和数量乘法。
与上一节说到的线性空间1V 到2V 的同构映射相比,线性映射比同构映射少了单映射和满映射这两条要求。
因此线性映射比同构映射更广泛。
线性空间1V 到2V 的线性映射也称为同态映射。
例1 将线性空间1V 中每一个向量映射成线性空间2V 中零向量的映射是一个线性映射,称为零映射,记为O ,即1(),V ααO =O ∀∈例2 线性空间V 到自身的恒等映射是一个线性映射,记为V ϕ,即(),V V ϕααα=∀∈例3 任意给定数k P ∈,数域P 上线性空间V 到自身的一个映射K (),k V ααα=∀∈是一个线性映射,称为V 上的由数决定的数乘映射。
例4 设σ是线性空间1V 到2V 的一个线性映射,定义1V 到2V 的映射1()()(),V σασαα-=-∀∈则σ-是线性空间1V 到2V 的线性映射,称为σ的负映射。
1.1.2【性质】 设σ是线性空间1V 到2V 的线性映射,则 (1)()σO =O ;(2)1()()(),V σασαα-=-∀∈;(3)线性映射保持线性组合与线性关系式不变,即若β是12,,,m αααL 的线性组合,且存在12,,,m k k k P ∈L ,有1122m m k k k βααα=+++L则经过线性映射σ之后,()σβ是12(),(),()m σασασαL 同样的线性组合:11221122()()()()m m m m k k k k k k σααασασασα+++=++L L(4)如果12,,,m αααL 是1V 的一组线性相关向量,则12(),(),()m σασασαL 是2V 中的一组线性相关的向量;并且当且仅当σ是一一映射时,1V 中线性无关向量组的像是2V 中的线性无关向量组。
§1.5 线性映射与线性变换一、线性映射与线性变换定义1 设12,V V 是两个集合,若对1V 中的每一个x ,按某种对应法则T ,在2V 中都有唯一确定的y 与之对应,则称T 为由1V 到2V 的映射,记为12:T V V →,()T x y =。
称y 为x 在映射T 下的象,x 为原象,记11(){|(),}T V y y T x x V ==∈,称1()T V 是1V 在T 下的象集。
显然12()T V V ⊂,若12()T V V =,则称T 为满射。
定义2 设12,V V 是数域F 上的线性空间,如果1V 到2V 的映射T 满足:(1)()()()T x y T x T y +=+ 1,x y V ∀∈ (2)()()T x T x λλ= 1,x V F λ∀∈∀∈ 则称T 为1V 到2V 的线性映射。
称1()T V 为T 值域,记为()R T 。
例1 给定m n A ⨯∈R ,n x ∀∈R ,则:T y Ax =是n R 到m R 的线性映射。
定义2 若T 是V 到V 的(线性)映射,则称T 为V 的(线性)变换。
例2 定义(())()dT f x f x dx =,()[]n f x P x ∀∈,则T 是[]n P x 的线性变换。
例3 定义(())()xa T f x f t dt =⎰,()[,]f x C ab ∀∈,则T 为[,]C a b 的线性变换。
定理1 设12:()()T V F V F →是线性映射,则 (1)12()v v T θθ=;(2)T 将1V 中的线性相关组映射为2V 中的线性相关组; (3)()R T 是2V 的子空间; (4)1dim ()dim R T V ≤; (5)若112(,,,)n V L x x x =,有12()((),(),,())n R T L T x T x T x =。
证明 (1)因为11111()()()()v v v v v T T T T θθθθθ=+=+,所以12()v v T θθ=。
线性空间上的线性映射理论线性映射是线性空间中的重要概念,它在各种数学和应用领域中都有着广泛的应用。
本文将介绍线性空间上的线性映射的定义、性质和相关定理,以及它在代数、几何和物理等领域中的应用。
1. 线性空间的定义线性空间是指一个集合,其中包含了一个数域(通常是实数域或复数域)的所有元素,同时满足一些特定的条件。
这些条件包括封闭性、加法运算的结合律和交换律、标量乘法的结合律和分配律等。
2. 线性映射的定义线性映射是指一个线性空间到另一个线性空间的映射,它保持向量的线性组合和标量乘法。
具体来说,设V和W是两个线性空间,f是从V到W的映射。
如果对于V中的任意两个向量u和v,以及任意的标量a,满足以下条件:- f(u + v) = f(u) + f(v) (保持向量的线性组合)- f(av) = af(v) (保持标量乘法)那么称f是一个线性映射。
3. 线性映射的性质线性映射有许多重要性质,其中一些是:- 零映射是一个线性映射,它将线性空间V中所有向量映射成零向量。
- 线性映射保持零向量:f(0) = 0。
- 恒等映射是一个线性映射,它将线性空间V中的任何向量映射为其自身。
- 线性映射的像是一个线性空间,它包含在目标空间W中。
- 线性映射的核是一个线性空间,它包含在起始空间V中。
- 线性映射在向量加法和标量乘法下保持封闭性。
4. 线性映射的相关定理线性映射具有许多重要的定理,其中一些是:- 利用矩阵表示:对于线性映射f,可以通过一个矩阵A来表示,称为线性映射的矩阵表示。
这个矩阵可以用来计算线性映射的像和核,以及进行线性变换等操作。
- 像空间和核空间的维数定理:对于线性映射f,其像空间和核空间的维数之和等于起始空间V的维数。
- 一一映射和满射:若线性映射f是一一映射,则其核为空空间,如果f是满射,则其像为目标空间。
- Rn和Rm之间的线性映射:对于线性映射f从Rn到Rm,可以通过线性变换矩阵来表示,这个矩阵可以用来计算矩阵的秩和零空间等。
线性代数中的向量空间与线性映射线性代数是数学中的一个重要分支,研究向量空间和线性映射等概念。
在本文中,我们将深入探讨线性代数中的向量空间和线性映射的定义、性质以及应用。
一、向量空间的定义与性质向量空间是线性代数中最基本的概念之一。
它是一组向量的集合,满足一定的运算规则和性质。
具体而言,一个向量空间需要满足以下条件:1. 加法封闭性:对于任意的向量u、v,它们的和u+v也属于该向量空间。
2. 数乘封闭性:对于任意的标量c和向量u,它们的数乘积cu也属于该向量空间。
3. 零向量存在性:存在一个零向量0,使得对于任意的向量u,有u+0=u。
4. 加法逆元存在性:对于任意的向量u,存在一个加法逆元-v,使得u+(-v)=0。
5. 结合律:对于向量空间中的任意三个向量u、v和w,有(u+v)+w=u+(v+w)。
6. 交换律:对于向量空间中的任意两个向量u和v,有u+v=v+u。
7. 数乘结合律:对于任意的标量c和向量u、v,有c(u+v)=cu+cv。
8. 数乘分配律:对于任意的标量c和向量u,v,有(c+d)u=cu+du。
9. 数乘分配律:对于任意的标量c和向量u,v,有c(u+v)=cu+cv。
除了以上性质外,向量空间还可以定义维度的概念。
维度是指向量空间中的一个基所包含的向量个数。
一个向量空间的维度可以用来描述该空间的大小。
二、线性映射的定义与性质线性映射是两个向量空间之间的一个函数,它将一个向量空间中的向量映射到另一个向量空间中的向量。
线性映射具有以下性质:1. 加法性:对于向量空间V中的任意两个向量u、v,以及标量c,线性映射f 满足f(u+v)=f(u)+f(v)和f(cu)=cf(u)。
2. 零向量映射:线性映射f将向量空间V中的零向量映射到另一个向量空间中的零向量,即f(0)=0。
3. 逆映射:对于线性映射f,存在一个逆映射g,使得f(g(v))=v和g(f(u))=u对于向量空间V中的任意向量u和另一个向量空间中的任意向量v成立。
线性空间与线性映射的基本理论线性空间是数学中一种重要的结构,广泛应用于线性代数、函数分析等领域。
线性映射作为线性空间之间的一种变换方式,对于研究线性空间的性质及其应用有着重要的作用。
本文将介绍线性空间与线性映射的基本理论,包括定义、性质以及相关定理的证明。
一、线性空间的定义与性质线性空间是指一个具有加法运算和数乘运算的集合,且满足一定的公理。
设V为一个集合,如果满足以下条件:1. 加法运算:对于任意的u、v∈V,存在一个元素u+v∈V,使得加法对于V中元素的操作满足交换律、结合律和存在零元素的性质。
2. 数乘运算:对于任意的α∈F(其中F为一个数域)和u∈V,存在一个元素αu∈V,使得数乘对于V中元素的操作满足结合律、分配律和单位元素的性质。
3. 加法单位元:存在一个元素0∈V,使得对于任意的u∈V,有u+0=u。
4. 相反元素存在:对于任意的u∈V,存在一个元素-v∈V,使得u+(-v)=0。
5. 数乘单位元:对于任意的u∈V,有1u=u。
若V满足上述条件,则称V为线性空间,V中的元素称为向量。
线性空间的定义体现了加法和数乘运算的基本性质。
二、线性映射的定义与性质线性映射是指将一个线性空间的向量映射到另一个线性空间的映射。
设V和W为两个线性空间,f: V→W是一个映射。
如果满足以下条件:1. 直线性:对于任意的u、v∈V和任意的α、β∈F,有f(αu+βv)=αf(u)+βf(v)。
2. 零元映射:f(0_V)=0_W,即零向量在V中的映射值为0_W。
则称f为从V到W的线性映射。
线性映射的定义保持了线性空间的运算性质,即通过映射后仍然保持加法和数乘的运算性质。
三、线性映射的性质与定理1. 线性映射的零核与满射性质:设f: V→W是一个线性映射,则f是满射(surjective)当且仅当它的像空间W即为整个目标空间W;f是单射(injective)当且仅当它的核空间(即所有映射为零向量的V中的向量构成的集合)为零空间{0_V}。