电力电子技术基础1—器件
- 格式:ppt
- 大小:2.01 MB
- 文档页数:8
第1章电力电子器件填空题:1.电力电子器件一般工作在________状态。
2.在通常情况下,电力电子器件功率损耗主要为________,而当器件开关频率较高时,功率损耗主要为________。
3.电力电子器件组成的系统,一般由________、________、________三部分组成,由于电路中存在电压和电流的过冲,往往需添加________。
4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为________、________、________三类。
5.电力二极管的工作特性可概括为________。
6.电力二极管的主要类型有________、________、________。
7.肖特基二极管的开关损耗________快恢复二极管的开关损耗。
8.晶闸管的基本工作特性可概括为____ 正向有触发则导通、反向截止____ 。
9.对同一晶闸管,维持电流I H与擎住电流I L在数值大小上有I L________I H。
10.晶闸管断态不重复电压U DRM与转折电压U bo数值大小上应为,U DRM________Ubo。
11.逆导晶闸管是将________与晶闸管________(如何连接)在同一管芯上的功率集成器件。
12.GTO的________结构是为了便于实现门极控制关断而设计的。
13.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为________。
14.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的________、前者的饱和区对应后者的________、前者的非饱和区对应后者的________。
15.电力MOSFET的通态电阻具有________温度系数。
16.IGBT 的开启电压U GE(th)随温度升高而________,开关速度________电力MOSFET 。
17.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是________。
第 1 次课 3 学时授课时间06.2.22 教案完成时间06.2.15 第一章电力电子器件 1.1 1.2 1.3 (包括绪论)课题(章节)教学目的与要求:通过该部分内容学习,使学生明白什么是电力电子技术? 电力电子技术的应用领域是什么? 电力电子技术与自动化专业、电子信息工程专业之间的的关系是什么?通过前三节的学习,学生应了解电力二极管、晶闸管等电力电子器件的基本结构、工作原理、主要参数、应用场合等。
教学重点、难点:器件的动态过程的波形的理解、器件的灵活应用是本次教学的重点和难点。
教学方法及师生互动设计:启发式,帮助学生回忆已学过的“电子技术基础”的相关知识,进而更好地理解“电力电子技术”知识,使学生建立知识的联想链。
课堂练习、作业:1、电力电子器件与信息电子器件的区别表现在哪些方面?2、试述在变频空调器中,哪些属于自动化技术,哪些属于电力电子技术?本次课堂教学内容小结介绍了电力电子技术背景知识、发展趋势。
介绍了电力二极管、晶闸管工作原理、基本特性和主要参数。
本次课堂教学达到预期目的,不少学生通过听讲表现出对电力电子技术课程的兴趣,课堂提问效果较好。
学好该课程需要较好的电子技术、电路方面的基础知识。
第 1 页第 2 次课 3 学时授课时间06.3.1 教案完成时间06.2.23 第一章电力电子器件 1.4 1.5 1.6课题(章节)教学目的与要求:通过该部分内容学习,使学生理解典型的全控型电力电子器件的工作原理、主要参数工程应用情况。
充分了解电力电子器件的驱动方式。
对其它新型器件也有所了解。
教学重点、难点:重点介绍晶闸管、IGBT、电力MOSFET三种应用最为广泛的器件的工作原理及其主要参数和工程应用。
教学方法及师生互动设计:以实际生活中见到的的实例,启发学生对于晶闸管、IGBT、电力MOSFET等器件的应用的理解。
如:调光台灯、风扇无极调速、电磁炉等。
课堂练习、作业:1、P42. 1.22、说出所知道的电力电子器件的名称及其应用场合、工作原理。
电力电子技术第五版复习资料第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC—AC:逆变(3)直流变直流DC—DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:指能够直接承担电能变换或控制任务的电路.(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件.2 电力电子器件一般都工作于开关状态,以减小本身损耗。
3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断.(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行.4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET 和IGBT.(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
如电力二极管.根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。
如SCR、GTO、GTR.(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。
如MOSFET、IGBT。
根据器件内部载流子参与导电的情况分类(1)单极型器件:内部由一种载流子参与导电的器件。
《电力电子技术》复习资料一 电力电子器件1. 要点:① 半控器件:晶闸管(SCR )全控器件:绝缘栅双极型晶体管(IGBT )、电力晶体管(GTR )、 门极关断晶闸管(GTO )、电力场效应管(MOSEFT ) 不可控器件:电力二极管各器件的导通条件、关断方法、电气符号及特点。
②注意电流有效值与电流平均值的区别: 平均值:整流后得到的直流电压、电流。
有效值:直流电压、电流所对应的交流值。
波形系数:K f =有效值/平均值 。
③电力电子技术器件的保护、串并联及缓冲电路: du /dt :关断时,采用阻容电路(RC )。
di/dt :导通时,采用电感电路。
二 整流电路1. 单相半波电路:① 注意电阻负载、电感负载的区别: ② 有效值与平均值的计算:平均值:整流后得到的直流电压、电流。
21cos 0.452d U U α+=d d U I R=有效值:直流电压、电流所对应的交流值。
U U =U I R = 波形系数:电流有效值与平均值之比。
f dIk I =② 注意计算功率、容量、功率因数时要用有效值。
③ 晶闸管的选型计算:Ⅰ求额度电压:2TM U =,再取1.5~2倍的裕量。
Ⅱ 求额度电流(通态平均电流I T (AV )) 先求出负载电流的有效值(f d I k I =); →求晶闸管的电流有效值(I T =I );→求晶闸管的电流平均值(()/T AV T f I I k =),再取1.5~2倍裕量。
2. 单相全桥电路负载:①注意电阻负载、电感负载和反电动势负载的区别: ② 电阻负载的计算:α移相范围:0~π负载平均值:整流后得到的直流电压、电流。
(半波的2倍)21cos 0.92d U U α+=d d U I R=负载有效值:直流电压、电流所对应的交流值。
U U =U I R = 晶闸管:电流平均值I dT 、电流有效值I T :dT d12I I =T I =③ 电感负载的计算:Ⅰ加续流二极管时,与电阻负载相同。
主要电力电子器件特点◆不可控器件——电力二极管PD◆电流驱动型器件(SCR、GTO、GTR)◆电压驱动型器件(POWER MOSFET、IGBT)()电力二极管(P Di d )I(一)电力二极管(Power Diode)I F◆二极管的基本原理——PN结的单向导电性功率提高:结构、P-i-NO U TO U FU◆PN 结的电容效应,结电容C J 影响PN 结的工作频率势垒电容C B 和扩散电容C D◆正向电压降U 和反向漏电流I Fd i F F U Ft t t rrt dt ft t td t◆通流能力强---电导调制效应F 012U Rd i R d t ◆存在较大反向电流和反向电压过冲a)U RPI R P ◆正向导通需要正向恢复时间t fr(二)电流驱动型器件特点:都是三个联接端,2个功率端,1个控制端◆晶闸管—半控型器件,开通时刻可控◆门极可关断晶闸管GTO☞晶闸管的一种派生器件,在门极施加负的脉冲电流使其关断小☞电流关断增益βoff◆电力晶体管(Giant Transistor——GTR)☞与普通的双极结型晶体管基本原理样与普通的双极结型晶体管基本原理一样☞最主要的特性是耐压高、电流大、开关特性好(三)电力MOSFET(绝缘栅型MOS)栅极来控制漏极特点◆电压来控制电流,它的特点:☞驱动电路简单,需要的驱动功率小。
☞开关速度快,工作频率高。
☞电流容量小,耐压低,多用于功率不超过10kW的电力电子装置。
◆按导电沟道可分为沟道和沟道P N沟道。
☞当栅极电压为零时漏源极之间就存在导电沟道的称为耗尽型。
对于N(P)沟道器件,栅极电压大于(小于)零时才存在导☞)沟道器件栅极电压大于(小于)零时才存在导电沟道的称为增强型。
☞在电力MOSFET中,主要是N沟道增强型。
中主要是☞输出特性截止区(GTR的截止区)饱和区(GTR的放大区)非饱和区(GTR的饱和区)饱和----漏源电压增加时漏极电流不再增加,非饱和指漏源电压增加时----漏极电流相应增加。
(第一章电力电子器件)电力电子技术——使用电力电子器件对电能进行变换和控制的技术,即应用于电力领域的电子技术。
电力电子器件——可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。
主电路——在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。
半导体器件采用的主要材料是硅【电力电子器件的特征】1处理电功率的能力非常大,一般远大于处理信息的电子器件。
2电力电子器件一般都工作在开关状态。
3电力电子器件往往需要由信息电子电路来控制和驱动。
4电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。
电力电子系统:由控制电路、保护电路、驱动电路和以电力电子器件为核心的主电路组成。
【电力电子器件的分类】1)按照器件能够被控制电路信号所控制的程度,可分为三类:半控型器件——通过控制信号可以控制其导通而不能控制其关断。
例:晶闸管全控型器件——通过控制信号既可控制其导通又可控制其关断,又称自关断器件。
如IGBT、Power MOSFET、GTO、BJT。
不可控器件——不能用控制信号来控制其通断,因此也就不需要驱动电路。
如电力二极管。
2)按照驱动电路信号的性质,可分为两类:电流驱动型,电压驱动型【电力二极管】PN结的单向导电性就是二极管的基本原理静态特性——主要是指其伏安特性动态特性——由于结电容的存在,电力二极管在通态与断态之间转换时,需经历一个过渡过程。
在此过渡过程中,其电压-电流特性随时间而变化,这就是电力二极管的动态特性,且专指反映通态和断态之间转换过程的开关特性。
正向平均电流I F(AV):即额定电流,指电力二极管长期运行时,在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。
正向平均电流I F(AV)的对应的有效值为1.57I F(AV) 【晶闸管】内部结构: 是PNPN四层半导体结构。
P1区引出阳极A,N2区引出阴极K,P2区引出门极G。
四个区形成三个PN结:J1、J2、J3。
电力电子技术_基础知识一、内容简述本文将阐述电力电子技术的定义与发展历程,及其在现代能源系统中的地位和作用。
我们将让读者理解电力电子技术是如何通过半导体器件将电能从源头转换到最终用户的过程。
此外还将介绍电力电子技术在可再生能源、工业控制、交通运输等领域的应用及其发展趋势。
本节将介绍电力电子系统中的主要组成部分——电力电子转换器与变换器。
这些设备是电力电子技术中的核心部件,用于实现交流(AC)和直流(DC)之间的转换,电压和电流的控制以及调整。
本部分将介绍不同类型转换器的工作原理和特性,并探讨其在各种应用场景中的应用。
本节将详细介绍在电力电子系统中使用的半导体器件和功率模块。
包括二极管、晶体管(如IGBT)、场效应晶体管(MOSFET)等的基本工作原理及其在电力转换和控制中的应用。
此外还将探讨这些器件的性能参数、特点及其在高性能电力系统中的应用挑战。
本部分将介绍电力电子系统中的控制技术和调制策略,通过适当的控制方法,可以实现电力电子系统的稳定运行和精确控制。
本部分将讨论不同类型的控制方法(如PWM调制、空间矢量调制等)以及它们在电力电子系统中的应用和实现。
电力电子系统的安全和稳定运行至关重要,本部分将介绍在电力电子系统中使用的保护和故障诊断技术。
这些技术可以确保系统在异常情况下安全运行并避免损坏,本部分将探讨不同类型的保护措施(如过流保护、过电压保护等)以及现代故障诊断技术的应用和发展趋势。
1. 介绍电力电子技术的概念及其在现代社会的重要性电力电子技术是一种结合了电力工程与电子工程的理论和技术的跨学科领域。
它主要研究利用半导体器件进行电能转换、控制和优化的技术。
简单来说电力电子技术就是研究如何将电能从一种形式转换为另一种形式,以满足不同设备和系统的需求。
这种技术在现代社会中扮演着至关重要的角色,涉及到我们日常生活中的方方面面。
随着科技的快速发展,电力电子技术的重要性日益凸显。
在现代社会的各个领域,从工业制造、交通运输、通讯设备,到家庭生活、数据中心以及可再生能源系统,几乎无处不在都需要电力电子技术的支持。
电力电子技术讲义电力电子技术讲义目录第1章电力电子器件 (3)第2章整流电路 (18)第3章逆变电路 (30)第4章直流直流变流电路 (39)第5章PWM控制技术 (45)第1章电力电子器件1.1电力二极管1. 电力二极管的基本特性电力二极管是指可以承受高电压大电流具有较大耗散功率的二极管,它与其他电力电子器件相配合,作为整流、续流、电压隔离、钳位或保护元件,在各种变流电路中发挥着重要作用;它的基本结构、工作原理和伏安特性与信息电子电路中的二极管相同,以半导体PN结为基础;主要类型有普通二极管、快恢复二极管和肖特基二极管;由一个面积较大的PN结和两端引线以及封装组成,从外形上看,大功率的主要有螺栓型和平板型两种封装,小功率的和普通二极管一致。
图1-1 电力二极管的外形、结构和电气图形符号a) 外形b) 结构c) 电气图形符号2.电力二极管的基本特性静态特性,主要是指其伏安特性。
正向电压大到一定值(门槛电压UTO ),正向电流才开始明显增加,处于稳定导通状态。
与IF对应的电力二极管两端的电压即为其正向电压降UF。
承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。
动态特性,因为结电容的导致电压-电流随时间变化,这就是电力二极管的动态特性,并且往往专指反映通态和断态之间转换过程的开关特性,由正向偏置转换为反向偏置。
电力二极管并不能立即关断,而是须经过一段短暂的时间才能重新获得反向阻断图1-2 电力二极管的伏安特性能力,进入截止状态。
在关断之前有较大的图1-3 电力二极管的动态过程波形 a)正向偏置转换为反向偏置b)零偏置转换为正向偏置反向电流出现,并伴随有明显的反向电压过冲。
延迟时间:td=t1-t0电流下降时间:tf =t2- t1反向恢复时间:trr=td+ tf恢复特性的软度: tf /td ,或称恢复系 数,用Sr 表示。
由零偏置转换为正向偏置,先出现一个过冲UFP ,经过一段时间才趋于接近稳态压降的某个值(如2V )。