第八章 姜启源 层次分析法
- 格式:ppt
- 大小:978.50 KB
- 文档页数:31
姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。
备要付生产准备费,产量大于需求时要付贮存费。
该厂生产能力非常大,即所需数量可在很短时间内产出。
生产能力非常大,即所需数量可在很短时间内产出。
已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。
试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。
),每次产量多少一次(生产周期),每次产量多少,使总费用最小。
不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。
求需求量、准备费、贮存费之间的关系。
<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。
件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。
元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。
元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。
层次分析法大学生就业选择问题摘要:大学毕业生都面临着就业这个问题,面对着各行各业,应该如何选择适合自己的工作,是迫切需要解决的问题。
针对为大学生对所提供的工作,运用层次分析法来分析大学生对所提供的工作的满意程度,根据所得数据解决问题。
关键词:就业、层次分析法、决策、目标、权向量一.问题的提出对于一个大学毕业生来说,找到适合自己的工作是迫切需要解决的问题。
一个毕业生在找工作时,通过投简历,面试等方法,现有四个单位可以供他选择。
即:C1政府机构,C2化工厂,C3清洁工人,C4销售。
如何从这四个工作岗位中选择他比较满意的工作?这是目前需要解决的。
通过研究,最终确定了六个准则作为参照依据,来判断出最适合且最让他满意的工作。
准则:B1课题研究,B2发展前途,B3待遇,B4同事关系,B5地理位置,B6单位名气;通过这六个标准来评判出最满意的工作。
二.模型的假设一.该毕业生是文科生,但在大学期间也辅修了很多理科方面的学科,文理科兼懂。
二.四个单位对毕业生所具备的客观条件一样。
三.该毕业生对这四个工作岗位的工作都可以胜任。
1.层次结构模型的建立。
第一层:目标层,即对可供选择的工作的满意程度A ;第二层:准则层,即课题研究B1,发展前途B2,待遇B3,同事关系B4,地理位置B5,单位名气B6;第三层:方案层,即政府机构C1,化工厂C2,清洁工人C3,销售C4。
根据以上层次结构模型,我做了一份就业选择满意度的调查表,对100名在校大学生进行抽样调查。
首先让被调查者针对图示的某一层对其上一层某种因素影响的重要性进行打分,再将数据的分值看作服从随机变量的分布,再利用数学期望计算出平均分。
设ξ表示某个问题的分值,根据概率论以及数理统计所学的知识点,得出ξ服从离散型分布如下。
(其中i n 为打分值为i ξξ=的人数,N 为被调查的总人数) 根据数学期望的定义,我们有离散型随机变量ξ的数学期望: 5i i i E P ξξ==∑由调查数据和公式可以得到就业选择的整体评分表(表2,表3)表3就业选择的整体评分表3.构造成对比较矩阵和计算权向量:构造成对比较矩阵A,第二层准则层对第一层目标层的成对矩阵A:即A=111420.5112420.510.51530.5 0.250.250.210.3330.333 0.50.50.333310.333222331⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦运用SAS软件求解得出A的最大特征根及其对应的特征向量,即W13=0.38122380.44265620.40457180.10565730.26943220.6413177⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦归一化0.1700.1970.180?0.0470.1200.286⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,λ=6.5856436一致性检验:一致性比率0.11712871.24CICRRI===0.0944586<0.1,则一致性检验通过,W13可以作为权向量。
层次分析法应用于城市购房决策中的实例分析濮长飞南京晓庄学院04数本2班摘要:本文针对消费者购房这一具体问题,基于高等代数矩阵内容,立足于数学建模,通过具体实例的分析详细描述了采用层次分析法解决多目标决策问题的方法和步骤,为消费者的购房决策提供科学合理的办法。
关键词:成对比较矩阵;特征根;特征向量;层次分析法随着经济的发展,收入水平的增加,消费者对商品房的要求也在增加。
目前多数消费者购房有的因为工作,有的是为了改善居住环境,还有的是为了投资。
不管是什么原因,由于涉及金额巨大,购房需慎之又慎,以免花钱买后悔。
针对消费者的需求,房地产开发商也在不断地推出新的楼盘。
这些楼盘往往各有各的特点,这使得消费者经常因选房而筋疲力尽,生怕捡了芝麻丢了西瓜。
究其原因,主要是考虑的因素太多,价格、交通、环境等等。
如就价格而言,甲比乙便宜;而就交通而言,乙又不如甲,这就使得购房者难以做出孰优孰劣的判断。
但是,所有的购房者都想买到物美价廉的房子,这是总目标,如果我们能够对备选房源“物美价廉”的程度进行量化,就能通过简单的数值比较做出决策。
运用统计学中的层次分析法就能轻松解决这一决策难题。
一、层次分析法概述1 简介层次分析法是美国运筹学家萨蒂在20世纪70年代提出的一种实用的定性和定量相结合的多准则决策方法。
它是把复杂的决策按照目标层、准则层、子准则层、方案层的顺序表示为一个有序的递阶层次结构,通过人们的比较判断,计算各种决策方案在不同准则及总目标之下的相对重要性权重,从而把难以量化的各种方案定量化,以得到各种方案的相对优劣的排序值,并据此做出最后的决策。
2 层次分析法的基本步骤第一步:根据问题的性质和要求,提出一个总目标。
将目标逐层分解为几个层次,建立层次结构模型。
第二步:对同一层次的各元素关于上一层次某一准则的重要性进行两两比较并赋权值,构造成对比较矩阵。
设某层有n 个因素1{,,}n x X X =,要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。
层次分析法及其应用摘要在日常生活中我们会遇到许多决策问题,处理决策问题时,要考虑的因素很多。
此文把层次分析法及其应用分为四个部分进行介绍,首先对层次分析的背景、现状、目的,其次对层次分析的原理进行分析,在运用层次分析和评价或决策时,按四个步骤进行描述:建立层次结构模型;构造成对比较矩阵;计算权向量并做一致性检验;计算组合权向量并做组合一致性检验,再次对层次分析的举例分析并行应用,最后进行总结。
关键词:层次分析法基本原理举例分析应用1、绪论层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。
目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。
AHP于1982年传入我国。
在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。
随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。
此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP 学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。
它的主要特点是定性与定量分析相结合,将人的主观判断用数量形式表达出来并进行科学处理,因此,更能适合复杂的社会科学领域的情况,较准确地反映社会科学领域的问题。
同时,这一方法虽然有深刻的理论基础,但表现形式非常简单,容易被人理解、接受,因此,这一方法得到了较为广泛的应用。
摘要:本文就同学们如何制定旅行方案,以实现费用最少,风景最优美的问题进行研究。
在考虑旅行费用与路线,时间和交通工具的关系之后,我们以实现费用最少为目标,进行了系统建模。
根据此问题,我们用层次分析模型,然后对模型进行求解编程。
把各个方案进行一个全面的分析、比较后,得到一优化方案,由优化方案结果分析表明模型的正确性、实际性和有效性。
最后根据一种更符合实际情况的假设,对模型进一步优化,建立了更加有效、更加节省时间和费用的优化方案,从而达到省钱和享受的目的。
一、问题的重述:同学们相约去旅游,有人想去新疆,有人想去西藏,还有人想去内蒙。
考虑到是学生,费用应占最大的比重,其次是看风景,再者是旅途,至于吃住对年轻人来说不太重要。
如果仅从费用、景色、饮食、居住和旅途等方面考虑,通过建模计算,给出假期旅游地的合理选择方案: 1.按地理位置(经纬度设计最短路旅行方案;2.如果 2011 年 10 月 1 日同学们从太原市出发,可选择航空、铁路(快车卧铺或动车,设计最经济的旅行互联网上订票方案;3.要综合考虑省钱、省时又方便,设定你的评价准则,建立数学模型,修订你的方案;4.对你的算法作复杂性、可行性及误差分析;5.关于旅行商问题提出对你自己所采用的算法的理解及评价。
二、问题的分析: 对于旅游问题,考虑各个景点之间的实际距离即路线距离和交通工具的选择,分析得出一条最短的旅游路径,以达到省时,省钱又方便的目的。
对于调整和改进后得到的几种路线来说,在一个周期开始时,每种可供选择的交通工具的费用已知,且价格在一个周期内相因此一个周期内路线和交通工具已经确定。
我们可以将问题分为两部分:旅行最愉快享受、费用时间最少。
由于各到景点的路线不一,因此存在一个路线问题,由于所乘交通工具的多样性,因此存在考虑费用和时间问题。
评价标准:因为同时要考虑三个方面的问题,各个问题的最优方案很难会一致,所以我们以三个方面问题的最优方案重复的次数来认为是不是最优方案。