图解微分法和图解积分法
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
第一章一阶微分方程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是 指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,例如 )(22t f cy dt dyb dt y d =++, 0)(2=++y dt dy t dt dy . (2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏微分方程. 例如 0222222=∂∂+∂∂+∂∂zTy T x T , t T x T ∂∂=∂∂422. 本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程. 3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数. 例如,)(22t f cy dt dyb dty d =++ 是二阶常微分方程; 0222222=∂∂+∂∂+∂∂zTy T x T 与t T x T ∂∂=∂∂422是二阶偏微分方程. 4. n 阶常微分方程的一般形式:(,,,...,)0n n dy d yF t y dt dt=,这里(,,,...,)n n dy d y F t y dt dt 是,,,...,n n dy d y t y dt dt 的已知函数,而且一定含有n n d ydt的项;y 是未知函数,t 是自变量. 5. 线性与非线性:(1) 如果方程(,,,...,)0n n dy d y F t y dt dt =的左端是y 及,...,n n dy d ydt dt的一次有理式,则称(,,,...,)0n n dy d yF t y dt dt=为n 阶线性微分方程. (2) 一般n 阶线性微分方程具有形式:1111()...()()()n n n n n n d y d y dy a t a t a t y f t dt dt dt---++++= 这里1()a t ,…, ()n a t ,()f t 是t 的已知函数.(3)不是线性方程的方程称为非线性方程. (4) 举例:方程)(22t f cy dt dyb dt y d =++是二阶线性微分方程; 方程0sin 22=+φφl gdtd 是二阶非线性微分方程;方程0)(2=++y dtdy t dt dy 是一阶非线性微分方程. 6. 解和隐式解:如果将函数()y t ϕ=代入方程(,,,...,)0n n dy d yF t y dt dt=后,能使它变为恒等式,则称函数()y t ϕ=为方程的解. 如果关系式,0t yΦ=()决定的隐函数()y t ϕ=是方程的解,则称,0t y Φ=()为方程的隐式解. 7. 通解与特解:把含有n 个独立的任意常数n c c c ,...,,21的解 12(,,,...,)n y t c c c ϕ=称为n 阶方程(,,,...,)0n n dy d yF t y dt dt =的通解. 其中解对常数的独立性是指,对ϕ及其 1n -阶导数11,...,n n d d dt dtϕϕ--关于n 个常数 n c c c ,...,,21的雅可比行列式不为0, 即 1212(1)(1)(1)120n n n n n nc c c c c c c c c ϕϕϕϕϕϕϕϕϕ---∂∂∂∂∂∂'''∂∂∂∂∂∂≠∂∂∂∂∂∂.为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.常见的定解条件是初始条件, n 阶微分方程(,,,...,)0n n dy d yF t y dt dt =的初始条件是指如下的n 个条件: 1(1)(1)00001,,...,n n n dy d y t t y y y y dt dt---====,,这里(1)(1)0000,,,...,n t y y y -是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程 形如()()dyf t y dtϕ=的方程为变量分离方程,其中(),()f t y ϕ分别为,t y 的连续函数.方程解法如下:若()0y ϕ≠,则()()()()dyf t dt y dyf t dt cy ϕϕ==+⎰⎰上式确定方程的隐式通解. 如果存在0y ,使得()00y ϕ=,则0y y =也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程形如 ()dy yg dt t=的方程为齐次方程,()g u 为u 的连续函数. 解法如下:做变量替换y u t =,即y ut =,有dy dut u dt dt=+,从而原方程变为 ()du t u g u dt +=,整理有()du g u u dt t-=,此为变量分离方程,可求解. (2) 形如111222a tb yc dy dt a t b y c ++=++的方程, 其中121212,,,,a a b b c c , 为常数. ●111222a b c k a b c ===的情形. 此时方程化为,dyk dt=可解得y kt c =+. ●11220,a b a b =即1122a b k a b ==的情形: 令 22,u a t b y =+ 则有 122222ku c du dya b a b dt dt u c +=+=++ 此为变量分离方程. ●11220a b a b ≠的情形对120c c ==的情况, 直接做变量替换yu t=. 当12,c c 不全为零, 求 11122200a t b y c a t b y c ++=⎧⎨++=⎩的解为t y αβ=⎧⎨=⎩. 令 T t Y y αβ=-⎧⎨=-⎩, 则方程组化为112200a T bY a T b Y +=⎧⎨+=⎩. 原方程化为12()a T bY dY Yg dT a T bY T+==+的齐次方程可求解. 3.一阶线性微分方程(1) 一般形式:()()()0dya tb t yc t dt++=,若()0a t ≠,则可写成()()dyP t y Q t dt=+的形式. (2) 一阶齐次线性微分方程:()dyP t y dt =,通解为(),P t dt ce c ⎰ 为任意常数. (3) 一阶非齐次线性微分方程:()()dyP t y Q t dt=+,()0Q t ≠. (4) 齐次线性微分方程的性质性质1 必有零解 0y =;性质2 通解等于任意常数c 与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 ()P t 为常数, 此时方程为()dyay Q t dt=+, a 为常数. 对应齐次方程的通解为atce , 只需再求一个特解, 这时根据()Q t 为特定的函数,可猜测不同的形式特解. 事实上, 当()BtQ t Ae =, ,A B 为给定常数, 且B a ≠时可设待定特解为Bt Ce , 而当B a =时, 可设特解形式为BtCte , 后代入方程可确定待定常数C . 当()Q t 为cos ,sin At At 或它们的线性组合时, 其中A 为给定常数. 这时可设待定特解为cos sin B At C At +代入方程后确定,B C 的值. 当()Q t 具有多项式形式1011n n n n a t a t a t a --++++, 其中01,,n a a a 为给定常数且00a ≠, 这时可设待定特解为1011nn n n b t bt b t b --++++代入方程可求得,0,1,,i b i n = 的值. 对于()Q t 有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令()()P t dty c t e ⎰=,代入方程,求出()c t 后可求得通解为()()(())P t dtP t dty e Q t e dt c -⎰⎰=+⎰.(iii) 积分因子法: 方程改写为()()dyP t y Q t dt-=, 将()P t dt e μ-⎰=, 乘方程两端得 ()()()()()P t dt P t dtP t dt dy e e P t y Q t e dt---⎰⎰⎰-= 即 ()()()()P t dtP t dt d ye Q t e dt --⎰⎰=, 从而通解为 ()()()P t dt P t dt ye Q t e dt c --⎰⎰ =+⎰,即 ()()(())P t d t P t d ty e Q t ed t c-⎰⎰= +⎰. 注意, 非齐次线性微分方程通解的结构是: 非齐次线性微分方程的通解等于其对应的齐次线性微分方程的通解加上非齐次线性微分方程的一个特解.4. 伯努利(Bernoulli)方程. 形如()()n dyP t y Q t y dt=+的方程, 其中 n 是常数且0,1,(),()n P t Q t ≠ 是连续函数, 称为伯努利方程. 伯努利方程可通过变量替换 1n z y -=化为(1)()(1)()dyn P t z n Q t dt=-+-, 这是关于未知函数z 的线性方程, 可求其通解.(三) 定性方法与数值方法:1. 斜率场:一阶微分方程(,)dyf t y dt =的解()y t ϕ=代表ty 平面上的一条曲线,称之为微分方程的积分曲线. 微分方程(,)dyf t y dt=的通解()y t ϕ=,c 对应于ty 平面上的一族曲线,称之为微分方程的积分曲线族. 满足初始条件00()y t y =的特解就是通过点00(,)t y 的一条积分曲线. 方程(,)dy f t y dt =的积分曲线上的每一点(,)t y 处的切线斜率dydt刚好等于函数(,)f t y 在这点的值. 也就是,积分曲线的每一点(,)t y 以及这点上的切线斜率dydt恒满足方程;反之,如果在一条曲线每点上其切线斜率刚好等于函数(,)f t y 在这点的值,则这一条曲线就是方程的积分曲线. 这样,可以用(,)f t y 在ty 平面的某个区域D 内定义过各点的小线段,其斜率为(,)f t y ,一般称这样的小线段为斜率标记. 而对ty 平面上D 内任一点(,)t y , 有这样一个小线段与之对应, 这样在D 内形成一个方向场, 称为斜率场. 斜率场是几何直观上描述解的常用方法2. 欧拉方法:求微分方程初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩ 的解,可以从初始条件00()y t y =出发,按照一定的步长t ∆ 依照某种方法逐步计算微分方程的近似解()n n y y t =, 这里0n t t n t =+∆这样求出的解称为数值解. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,可求初值问题的近似解,这种方法称为欧拉方法.欧拉方法具有一阶误差精度 .如果我们先用欧拉公式求出近似解,再利用梯形公式进行校正, 得到的近似解将具有2阶误差精度, 具体为 预测: 1(,)n n n n y y f t y t +=+∆, 校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆, 这种方法称为改进的欧拉方法.(四) 解的存在性、唯一性及解对初值的连续相依性1. 利普希茨(lipschitz )条件: 函数(,)f t y 称为在区域2D ⊆R 内关于y 满足利普希茨条件,是指如果存在常数0L >,使得不等式1212(,)(,)f t y f t y L y y -≤-对于所有的12(,),(,)t y t y D ∈都成立, 其中L 称为利普希茨常数. 2. 基本定理(1) 解的存在性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续.如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩ 的解. (2) 解的唯一性定理: 设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈并且12(),()y t y t 是初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩在区间00(,)t t εε-+内的两个解,那么对任意的00(,)t t t εε∈-+,12()()y t y t =,即解是唯一的.注记1: 存在性定理和唯一性定理结合在一起称为初值问题解的存在唯一性定理,叙述如下:设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈, 那么,存在0ε> 和函数()y t , 定义于区间00(,)t t εε-+内,是初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩ 的唯一解. 因而当我们判断初值问题解的存在唯一性时,要检查(,)f t y 需要满足的条件.注记2: 由于利普希茨条件较难检验,常用(,)f t y 在2{(,):,}D t y a t b c y d =∈ ≤≤ ≤≤R上对y 有连续偏导数来代替. 事实上,如果在D 上y f ∂∂存在且连续,则yf∂∂在D 上有界. 设在D 上L yf≤∂∂, 这时 2121212(,())(,)(,)f t y y y f t y f t y y y yθ∂+--=-∂21y y L -≤, 其中 12(,),(,),01t y t y D θ∈ <<. 但反过来满足利普希茨条件的函数(,)f t y 不一定有偏导数存在. 例如(,)||f t y y = 在任何区域内都满足利普希茨条件,但它在0y =处没有导数.(3) 解对初值的连续相依性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩在区间00(,)t h t h -+内的解,其中 0h >,那么,对任意给定的0>ε,必能找到正数(,)0h δδε=>,使得 当2220000t t y y δ-+-<()()时,初值问题00(,)()dyf t y dty t y⎧=⎪⎨⎪=⎩的解00(,,)y t t y ϕ=在区间00(,)t h t h -+内也有定义,并且0000|(,,),,|,t t y x t y ϕϕε-<() 00(,)t t h t h ∈-+. (4) 解对初值的连续性定理设(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续且关于y 满足利普希茨条件. 如果00(,)t y D ∈,00(,,)y t t y ϕ=是初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩的解, 那么00(,,)t t y ϕ作为00,,t t y 的三元函数在它存在的范围内是连续的.3. 初值问题的适定性当一个微分方程初值问题的解存在, 唯一并且解连续的依赖于初始条件时, 我们称该问题是适定的. 那么, 对于常微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩, 只要在00(,)t y 所在的区域内,(,)f t y 连续并且关于y 满足利普希茨条件, 则该初值问题是适定的.(五) 自治方程的平衡点与相线1. 自治方程 当一阶微分方程(,)dy f t y dt =的右端项只是y 的函数而与自变量t 无关, 即()dy f y dt=时, 称为自治方程.2. 平衡解与平衡点 对自治方程()dyf y dt=而言, 若()0f y =有解0y y =, 则称 0()y t y ≡ 是方程的平衡解, 而点0y 称为方程的一个平衡点. 3. 相线相线是仅仅对自治方程()dyf y dt=而言的一种简化的斜率场. 自治方程的斜率场在水平直线上的斜率标记是一样的, 这样只要知道一条竖直直线上的斜率标记, 我们就可以知道整个斜率场. 因而, 在一个竖直的直线上, 我们用向上的箭头表示正的导数, 用向下的箭头表示负的导数. 对于导数为零的点, 用实心圆点来标记它, 则形成该自治方程的相线. 4. 画相线的基本步骤 (1) 画出y -线(竖直线),(2) 找到并在y -线上标记平衡点,不连续点或定义域外的点 (3) 找到()0f y >的区间, 在这些区间上画上向上的箭头, (4) 找到()0f y < 的区间, 在这些区间上画上向下的箭头.5. 初值问题0(),(0)dyf y y y dt= =解的渐近行为 (1) 趋向于平衡点, 如01()(1),2f y y y y =- =;(2) 在无限时间内趋于无穷, 如0(),1f y y y = =; (3) 在有限时间内趋于无穷(爆破), 如20(),1f y y y = =; (4) 在有限时间内停止(导数趋于无穷), 如 01(),1f y y y=- =. 6. 平衡点的分类对于自治方程()dyf y dt=, 如果()f y 在(,)-∞+∞ 内连续, 那么它的解当t 增加时要么(在有限或无限时间里)趋于+∞或-∞, 要么渐近趋于平衡点. 因而,平衡点在自治方程的研究中起着重要的作用. (1) 汇对于初值接近0y 的解, 当t 增加时, 都渐近趋于0y . 对于这样的平衡点0y , 我们称之为汇, 它是稳定的. (2) 源对于初值接近0y 的解, 当t 增加时, 都远离0y . 对于这样的平衡点0y , 我们称之为源,它是不稳定的. (3) 结点既不是源也不是汇的平衡点, 我们称之为结点,它也是不稳定的. 7. 判断平衡点类型的线性化方法 1. 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 那么 (1) 0y 是源当且仅当()f y 在0y 附近严格单调增加; (2) 0y 是汇当且仅当()f y 在0y 附近严格单调递减. 2. (线性化定理) 如果0y 是自治方程()dyf y dt=的一个平衡点, 即0()0f y =, 并且()f y 是连续可微的, 那么 (1) 若0()0f y '> 则0y 是源; (2) 若0()0f y '<, 则0y 是汇;(3) 若0()0f y '=, 则需要进一步的信息决定其类型.(六) 分歧一阶微分方程解的渐近行为随参数变化发生了类型的变化, 我们称之为分歧现象(或分支, 分叉).1. 分歧发生的条件 对于单参数微分方程族()(,)dy f y f y dtμμ==, 0μμ=是一个分歧值的必要条件是: 存在平衡点0y , 使得 0000(,)(,)0f f y y yμμ∂==∂. 这样我们要找分歧点可以通过求解方程组 (,)0(,)0f y f y y μμ=⎧⎪∂⎨=⎪∂⎩, 得到解 00(,)y μ,0μ为可能的分歧值, 而0y 是可能发生分歧的平衡点. 2. 分歧图解与分歧类型分歧图解是y μ 平面上方程在分歧值附近的所有相线的图, 用以强调当参数经过分歧值时相线所经历的变化.(1) 鞍结点分歧在分歧图解(图1-1)中, 当μ从左到右经过分歧值0μ时, 方程的平衡点从两个变为一个再变为不存在, 这种分歧一般称之为鞍结点分歧. 这类分歧图解在分歧值附近是抛物线的形状(2) 在分歧图解(图1-2)中,当μ从右到左经过分歧值0μ=时, 方程的平衡点由三个变为一个, 这种分歧一般称之为音叉分歧.图 1-1 鞍结点分歧 图 1-2 音叉分歧图 1-3 跨越分歧 图 1-4 复合分歧(3) 在分歧图解(图1-3)中, 当0μ= 时, 方程有一个平衡点; 当0μ≠ 时, 方程有两个平衡点. 0μ=是一个分歧值. 虽然在分歧值的两侧方程都有两个平衡点,但平衡点的稳定性会改变. 当0μ> 时, 0y =是一个汇,它是稳定的; 当0μ<时, 0y =是一个源,它 是不稳定的. 这类分歧一般称为跨越分歧.(4) 在分歧图解(图1-4)中, 当 μ从左到右变化时,相应的方程平衡点依次由一个变为两个,三个,两个再变回一个, 这种分歧一般称之为复合分歧.(七) 一阶微分方程的应用1. 增长和衰减问题设 ()S t 为正在增长或衰减的某研究对象的总量. 如果假设它随时间的变化率dS dt与当前数目成正比, 其比例系数为 k , 则有 dS kS dt =, 或 0dS kS dt-=. 设()S t 可微, 因而是连续函数. Malthus 人口模型满足上述微分方程, 虽然对人口问题, ()S t 是离散的, 只能取整数值, 但该模型系统在一定情况下提供了很好的近似对某一生物种群进行研究时, 该生物种群的增长往往受资源和环境的限制, 引进参量N , 称为最大承载量, 用以表示自然资源和环境条件所能容纳的最大数量, 并且假定 (1)当基数很小时,增长率与当前数成正比;(2)当基数很大,达到资源和环境不能承受的时候,数量开始减少,即增长率为负的. 此时方程可改写为(1)dS S k S dt N=-, 称为具有增长率k 和最大承载量N 的Logistic 模型,该模型最早由荷兰生物学家 Verhulst在1838年提出.2. 温度问题牛顿冷却定律(亦适应于加热的情况)说明物体的温度随时间的变化率与物体所处的周围环境的温差成正比, 设 T 是物体的温度, T 是所处环境的温度, 那么物体温度随时间的变化率为dT dt, 牛顿冷却定律可表示为 ()dT k T T dt=--, 其中k 是正的比例系数, 而负号表示在冷却过程中, 物体温度 T 大于周围环境温度T , 变化率0dT dt <. 在加热过程中0dT dt>, 此时T T <. 3. 稀释问题一容器最初容纳0V 升盐水溶液, 其中含盐 a 克. 每升含盐 b 克的盐水溶液以e 升/分的速度注入,同时, 搅拌均匀的溶液以f 升/分的速度流出, 问在任何时刻 t , 容器中的含盐量.设Q 为任何时刻容器中的含盐量. Q 的变化率dQ dt等于盐的注入率减去流出率. 盐的注入率是 be 克/分. 要决定流出率, 首先计算在时刻t , 容器中的溶液的体积, 它等于最初的体积0V 加上注入的体积 et 后减去流出的体积ft . 因此, 在任一时刻t , 盐水的体积是 0V et ft +-. 在任何时刻的浓度是 0Q V et ft +-, 由此得流出率为 0Qf V et ft+-/分. 于是得到微分方程 0dQ Qf be dt V et ft =-+-, 即 0dQ f Q be dt V et ft+=+-, 这是一个一阶线性方程.4. 电路一个简单的 RC 回路是包含有电阻R (欧姆), 电容C (法拉)和电源V (伏特),如图1-5.图1-5 RC 电路 图1-6 RL 电路由电路学知识,C 的电压()v t 与电阻R 的电压之和应为电源的电压()V t . 电路中的电流I (安培)为 ()dQ dCv t dv I C dt dt dt ===, 其中 Q 为电量从而R 处的电压为 dv RI RC dt=, 由此我们可以建立RC 电路的模型如下:()dv RC v V t dt +=, 即 ()dv V t v dt RC-=. 对于一个包含有电阻R (欧姆), 电感L (亨利)和电源V (伏特)的RL 回路,如图1-6. 电路中的电流应满足的基本方程为 dI R V I dt L L +=.(八) 种群生态学中的模型设()y t 表示一个生物种群的数量, t 为时间, 最简单的种群模型是 Malthus 模型dy ky dt=. Malthus 模型的解()(0)kt y t y e =预测了种群数量的指数增长.由于种群数量大的时候,对资源的竞争加剧,因此单位增长率会随种群数目增大而减小,因此更为合理的假设是()dy yf y dt= (*) 这里()f y 是单位增长率,因为dy dt 为增长率,y 是种群数量, 而()/dy f y y dt =. 当考虑种群数量的变化时.对()f y 而言, 其代数形式并不重要, 而关键是其单调性, 凸凹性, 这样我们可以对其进行大致分类:(1) 若()f y 在[0,)+∞上是递减的,称(*)为 Logistic 型;(2) 若()f y 在[0,)+∞上是先增后减的,称(*)为 Allee 效应型;(3) 若()f y 在[0,)+∞上是递减再递增最后递减的,称(*)为 Hysteresis 型.1.3典型例题:例1 考虑微分方程 3220dy y y y dt=--, 问 (1) y 为何值时, ()y t 将保持不变?(2) y 为何值时, ()y t 将增加?(3) y 为何值时, ()y t 将减少?解: 因为当0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt<时, ()y t 将减少. 由3220dy y y y dt=--知, (1) 当32200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变.(2) 当32200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加.(3) 当32200y y y --<, 即4y <- 或05y << 时, ()y t 将减少.例2 假定在鄱阳湖中一种鱼类的数量()S t 随时间的变化按Logistic 模型增长, 增长率为k , 最大承载量为N , 即有 (1)dS S k S dt N=-. 如果每年要从湖中捕获一定量的鱼, 试按下述不同情形对模型做适当修改,(1) 每年捕获10吨?(2) 每年捕获总量的三分之一?(3) 捕获量与总量的平方根成正比?解: (1)(1)10dS S k S dt N=--. (2) 1(1)3dS S k S S dt N =--. (3) (1)dS S k S l S dt N =--, 其中 l 是捕获量与总量平方根的比例系数. 例3 求解方程dy t dt y=- 解:变量分离得 ydt tdy =-.两边积分 22222y t c =-+. 通解为 22t y c +=, c 为任意正常数.例4 求解方程231dy y dx xy x y+=+ 解:变量分离得221(1)ydy dx y x x =++, 两边积分 2221()1(1)1ydy dx x dx y x x x x ==-+++⎰⎰⎰.即 22111ln(1)ln ||ln(1)22y x x c +=-++, 1c 为任意常数, 整理得222(1)(1)y x cx ++=, 12c c e =为任意正的常数.例5 求解方程tan dy y xy dx x-=. 解: 将方程改写为 tan dy y y dx x x=+, 这是齐次方程, 做变量替换y u x =,即y ux =,有dy du x u dx dx=+,从而原方程变为 tan du x u u u dx +=+ 即tan du u dx x= 利用分离变量法求得 s i n u c x =, 代回原变量得通解为sin y cx x=, c 为任意常数 例6 求解方程22dy x y x y dx=+-. 解: 方程改写为2s g n 1()d y y y x d x x x =+⋅- 令u =y x ,则y u x =,从而2sgn 1du x u u x u dx+=+⋅- 当210u -≠时,2sgn 1dux dx xu =-, arcsin sgn ln u x x c =⋅+, 即 arcsin sgn ln y x x c x=⋅+, c 为任意常数.此外,还有解210u -=,即22y x =.例7 求解方程 13dy x y dx x y -+=+- 解: 解方程组 1030x y x y -+=⎧⎨+-=⎩的解 为 12x y =⎧⎨=⎩. 令 12X x Y y =-⎧⎨=-⎩ , 则原方程化为 dY X Y dX X Y -=+.令 Y u X = ,则可化为变量分离方程 21,12dX u du X u u +=-- 解得 222Y XY X c --=, 代回原变量 有22262y xy x y x c +---=, c 为任意常数.例8 求解方程 2()dy y b t dt-=, 其中 (1) 2()1b t t t =++,(2) 4()t b t e =(3) 2()3t b t e =(4) ()cos3b t t =(5) 422()3cos31t t b t e e t t t =+++++解: 对应齐次方程的通解为 2t y ce =, 下面用猜测-检验法求特解(1) 设 21y At Bt C =++ 代入 221dy y t t dt-=++, 有 2222()1At B At Bt C t t +-++=++解得 1,1,12A B C =- =- =-, 从而21112y t t =---, 原方程的通解为 22112ty ce t t =---, c 为任意常数. (2) 设 42t y Ae = 代入 42t dy y e dt -=, 有 44442t t t Ae Ae e -=解得 12A =, 从而4212t y e =, 原方程的通解为 2412t t y ce e =+, c 为任意常数. (3) 不能设2t Ae 形式的特解, 因为它是相应齐次方程的解,不可能是非齐次方程的解, 设 23t y Ate = 代入 22t dy y e dt-=, 有 2222223t t t t Ate Ae Ate e +-=解得 3A =, 从而233t y te =, 原方程的通解为2223(3)t t t y ce te c t e =+=+, c 为任意常数.(4) 设 4cos3sin3y A t B t =+ 代入 2cos3dy y t dt-=, 有 3sin33cos32(cos3sin3)cos3A t B t A t B t t -+-+=有 2310320A B A B -+-=⎧⎨ --=⎩, 解得 23,1313A B =- =, 从而423cos3sin 31313y t t =-+, 原方程的通解为 223cos3sin 31313t y ce t t =-+, c 为任意常数.(5) 根据叠加原理, 由前面4个小题知方程有特解422512313cos3sin 31213132t t y e te t t t t =+-+--- 原方程的通解为242212313cos3sin 31213132t t t y ce e te t t t t =++-+---,c 为任意常数. 例9 求方程22dy y dx x y =-的通解. 解: 将方程改写为222dx x y x y dy y y-==-. 求齐次线性微分方程 2dx x dy y=, 得通解为2x cy =. (常数变易法) 令 2()x c y y =代入原方程 得()1,()ln ||dc y c y y c dy y=- =-+, 从而可得原方程的通解为2(ln ||)x y y c =-+, c 为任意常数.例10 求方程26dy y ty dt t=-的通解. 解: 此为 2n =的伯努利方程. 令 1z y -=可得6dz z t dt t =-+,此为线性方程可求通解为 268c t z t =-+, 代回原变量得 2618c t y t =-+, 即 688t t c y -=, c 为任意常数. 此外, 原方程还有解0y =.例11 用积分因子法求解方程 32(1)1dy y t dt t =+++. 解: 方程改写为 32(1)1dy y t dt t -=++, 积分因子为 221()(1)dt t t e t μ- -+⎰==+, 乘方程两端得 23(1)2(1)1dy t t y t dt--+-+=+, 即 2(1)1d t y t dt-+=+, 有 421(1)(1)2y t c t =+++, c 为任意常数.例12 若()f t 连续且0()()10t f t f s ds t = , ≠⎰, 试求函数()f t 的一般表达式. 解: 设0()()tF t f s ds =⎰, 则()F t 可导且()()F t f t '=, 这样有1,dF FFdF dt dt = =, 得 2()2,()2F t t c F t t c =+ =±+, 又(0)0F =, 得0c =. 从而 ()2F t t =±, 进而 1()()2f t F t t'==±. 例13 求具有性质 ()()()1()()y t y s y t s y t y s ++=- 的函数 ()y t , 已知(0)y '存在. 解: 首先令 0s =, 由已知可得 ()(0)()1()(0)y t y y t y t y +=-, 化简有 2(0)(1())0y y t +=, 知 (0)0y =. 由函数的导数定义00202002()()()lim()()()1()()lim ()(1())lim (1()())()1()lim lim 1()()(0)(1())s s s s s y t s y t y t sy t y s y t y t y s sy s y t s y t y s y s y t s y t y s y y t →→→→→+-'=+-- =+ =-+ = -' = + 变形为 2(0)1()dy y dt y t '=+, 积分得 arctan ()(0)y t y t c ' = +, 由(0)0y =, 知 0c =, 所以满足条件的函数为 ()tan (0))y t y t '= (.例14 下面给定8个微分方程和4个斜率场, 请选出斜率场相应的微分方程, 并说明理由. (1) 2dy t dt =- (2) 24dy y dt =- (3) 2dy y t dt=- (4) 2dy t dt =- (5) 24dy y dt =- (6) 2dy y dt =- (7) dy yt t dt =+ (8) 2dy y t dt=+图1-7 图1-8图1-9 图1-10解: 图1-7对应于(4),图1-8对应于(3),图1-9对应于(2),图1-10对应于(7). 这是因为图1-7的斜率场竖直方向上的斜率标记一样, 知方程的右端项仅是自变量t 的函数()f t , 且当 2t >, ()0f t <, 当2t <时, ()0f t >, 只有(4)满足要求. 图1-8的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且当 0y <时,(,)0f t y <, 只有(3)满足.图1-9的斜率场知方程为自治方程有平衡点 2,2y y ==-, 且在 22y -<<时,()0f y <, 知只有(2)满足要求.图1-10的斜率场知方程右端项为(,)f t y 是 ,t y 的函数, 且有平衡解 1y =-, 只有(7)满足要求.例15 利用欧拉方法和改进的欧拉方法, 对步长 0.1t ∆=, 在区间[0,1]上求初值问题21,(0)0dyy y dt=+ =的近似解. 解: 这里 200(,)1,0,0f t y y t y =+==. 利用欧拉公式10(,),n n n n n y y f t y t t t n t +=+∆ =+∆,和 改进的欧拉方法,预测: 1(,)n n n n y y f t y t +=+∆, 校正: 11,11[(,)()]2n n n n n n y y f t y f t y t ++ +=++∆,分别计算如下表:欧拉方法改进的欧拉方法n n tn y(,)n n f t y 预测的n y校正的n y 真 解tan y t =0 010 0 1 0.1 0.1000 1.0100 0.1000 0.1005 0.1003 2 0.2 0.2010 1.0404 0.2015 0.2030 0.2027 3 0.3 0.3050 1.0930 0.3072 0.3098 0.3093 4 0.4 0.4143 1.1716 0.4194 0.4234 0.4228 5 0.5 0.5315 1.2825 0.5413 0.5470 0.5463 6 0.6 0.6598 1.4353 0.6769 0.6849 0.6841 7 0.7 0.8033 1.6453 0.8318 0.8429 0.8423 8 0.8 0.9678 1.9366 1.0140 1.0299 1.0296 9 0.9 1.1615 2.34911.2360 1.2592 1.2602 10 11.39642.94991.51791.55371.5574例16 讨论微分方程 233dyy dt=在怎样的区域内满足存在唯一性定理的条件,并求通过点(0, 0) 的一切解.解: 由 23(,)3f t y y =, 知它在全平面内连续, 又由于13(,)2f t y y y-∂=∂, 在除去0y =的区域内连续, 从而在除去0y =的有界闭区域内有界, 进而满足利普希茨条件, 知方程满足初始条件00()0y t y =≠的解在充分小的邻域内存在并且唯一. 当 0y =时, 函数0y =是方程过 (0,0) 的解.当0y ≠时, 方程可变形为 2313y dy dt - =, 积分得 3()y t c =+, c 为任意常数.当0c =时, 得特解 3y t = 是过 (0,0) 的另一个解, 其实, 除零解外, 过(0,0)的所有解可以表示为3111(),0,t c t c y t c ⎧- <=⎨ ≥⎩,3222(),0,t c t c y t c ⎧- >=⎨ ≤⎩, 31132212(),(),0,t c t c y t c t c c t c ⎧- <⎪=- >⎨⎪≤≤⎩,其中12,c c 是满足10c ≤,20c ≥的任意常数, 这些解的定义区间为(,)-∞ +∞, 但本质上在充分小的邻域 (,)εε-内方程所确定的过(0,0)的解只有四个,即 函数30,y y t = =, 3,00,t t y t εε⎧ -<<=⎨ 0≤<⎩及30,0,t y t t εε -<<⎧=⎨ 0≤<⎩.例17 举例说明一阶微分方程初值问题00(,)()dyf t y dt y t y⎧=⎪⎨⎪=⎩解的存在唯一性定理中, 关于(,)f t y 在矩形区域2{(,):,}D t y a t b c y d =∈ << <<R 内连续,关于y 满足利普希茨条件是保证解的存在唯一的非必要条件.解: (1) 当连续条件不满足时, 解也可能是存在唯一的. 如方程1,(,)0,y t dyf t y y t dt =⎧==⎨≠⎩, 显然, (,)f t y 在以原点为心的任何矩形区域内不连续, 间断点为直线y t =, 但过原点的解存在唯一, 这个解就是y t =.(2) 当利普希茨条件不满足时, 解也可能是唯一的. 如ln ||,0(,)0,y y y dyf t y y t dt ≠⎧==⎨=⎩, 由于 11111|(,)(,0)||ln ||0||ln ||||0|f t y f t y y y y -=-=⋅-,当 110,ln ||y y → →-∞无界, 因而(,)f t y 在以原点为心的任何矩形领域内不满足利普希茨条件. 然而方程的所有解为 xce y e =±,c 为任意常数, 及 0y =.过原点(0,0)有唯一解 ()0y t =. 例18 对微分方程(2)(5)dyy y y dt=--而言, 利用存在唯一性定理, 说明满足下列初始条件的解是否存在, 如果存在你能否知道这个解或有关这个解的一些性质.(1) (0)6y =, (2) (0)5y =, (3) (0)1y =, (4) (0)1y =-.解: 由方程的右端项为 ()(2)(5)f y y y y =--仅为 y 的函数在全平面上连续可微,从而由存在唯一性定理, 给定初始条件的解是存在并且是唯一的. 首先由()(2)(5)f y y y y =--知方程有()0,()2,()5y t y t y t = = =三个平衡解.(1) 初始条件为 (0)6y =, 初值位于()5y t =的上方, 由唯一性, 满足这个初始。
怎么求一个函数的反函数
在数学上,求一个函数的反函数就是求这个函数的逆函数。
逆函数的定义是:如果函数y=f(x)在某个区间上可导,则称f(x)的反函数为
y=f–1(x),满足微分关系:f(x)*[f—1x]的微分=1。
下面列出求函数反函数的几种方法:
一、函数法:
1. 对函数y=f(x)取对数:遇到函数y=f(x),首先将函数取对数,变为logf(x)=y,进而可以求出f(x)的反函数。
2. 用反函数求不定积分:两边各乘以任意一个函数的微分,再进行不定积分,可以求出f(x)的反函数。
3. 取反:反转函数f(x)等于自变量x和因变量y的角色,即x=f(y),即f(x)的反函数为y=f–1(x)。
二、拉格朗日法:
将函数y=f(x)连续复制n次,即y1=f(x1),y2=f(x2)...yn=f(xn),求得n个等式,再将x系数移到左边,可以求出f(x)的反函数。
三、图解法:
1. 绘制函数图象:分析函数的图象,可以明确函数的性质,从而找出f(x)的反函数。
2.极坐标绘制:将极坐标读数位置与直角坐标位置对应起来,再以定点按对应关系绘制图形,可以求得函数的反函数。
四、数据插值:
通过给定的一组散点得出函数的一元多项式,再取反,得出f(x)的反函数。
总之,求一个函数的反函数并不是一件困难的事情,可以从函数、拉格朗日法、图解法、数据插值几个角度来求解。
只要熟悉和掌握相关知识,就可以很快准确地解决问题。
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
图解微分法与图解积分法简介1、图解微分法下面以图为例来说明图解微分法的作图步骤,图1-6为某一位移线图, 曲线上任一点的速度可表示为:αμμμμtan tS t S dx dy dt ds v ===图位移线图其中dy 和d x 为s=s(t)线图中代表微小位移d s 和微小时间dt 的线段, α为曲线s =s(t) 在所研究位置处切线的倾角。
上式表明,曲线在每一位置处的速度v 与曲线在该点处的斜率成正比,即v ∝tg α,为了用线段来表示速度,引入极距K (mm),则αμαμμαμμμμtan tan tan K K Kdx dy dt ds v v t S t S t S =⋅==== 式中μv 为速度比例尺,μv = μs /μt K ( m/s/mm )。
该式说明当K 为直角三角形中α角的相邻直角边时,(Ktg α)为角α的对边。
由此可知,在曲线的各个位置, 其速度v 与以K 为底边,斜边平行于s =s(t)曲线在所研究点处的切线的直角三角形的对边高度(Ktg α)成正比。
该式正是图解微分法的理论依据,按此便可由位移线图作得速度线图(v-v(t)曲线),作图过程如下:先建立速度线图的坐标系v =v(t)(图a),其中分别以μv 和μt 作为v 轴和t 轴的比例尺, 然后沿轴向左延长至o 点,o0=K(mm),距离K 称为极距,点o 为极点。
过o 点作s =s( t)曲线(图)上各位置切线的平行线o 1"、o2"、o3"...等,在纵坐标轴上截得线段01"、02"、03"...等。
由前面分析可知,这些线段分别表示曲线在2'、3'、4'... 等位置时的速度,从而很容易画出位移曲线的速度曲线(图a)。
原来如此简单,图解微积分之拉格朗⽇定理!01 开场⽩中值定理。
说到学微积分,在学完导数的基本概念之后,⼀定免不了接触中值定理什么罗尔定理,费马定理,拉格朗⽇中值定理,洛必达法则等等。
有的同学不得其要领,只求记住公式做题⽬,这样是⽆法灵活运⽤的。
这篇⽂章,就让我们⼀起来了解⼀下拉格朗⽇定理和洛必达法则。
02 拉格朗⽇定理拉格朗⽇约瑟夫·拉格朗⽇伯爵(1736 ~ 1813)是18世纪欧洲最伟⼤的数学家。
拉格朗⽇⼀⽣致⼒于数学、⼒学和天⽂学的研究,是变分法的开拓者和分析⼒学的奠基⼈。
作为家中长⼦,拉格朗⽇的⽗亲是希望拉格朗⽇学习法律的。
但是,偏偏拉格朗⽇⾃幼热爱天⽂学。
在拉格朗⽇16岁时,⼀篇介绍⽜顿微积分的⽂章《论分析⽅法的优点》燃起了拉格朗⽇对⽜顿你的崇拜和敬仰之情,⾃此发奋钻研数学。
拉格朗⽇与另⼀位神⼈欧拉是挚友。
在两位⼤师的不懈努⼒下,成功创⽴数学的⼀个新分⽀ - 变分法。
拉格朗⽇在天⽂学上颇有造诣,发表论⽂论证有关⽉球何以⾃转、以及⾃转总是以同⼀⾯⾯对地球的难题。
拉格朗⽇⼀⽣学分严谨、精益求精。
他的成果也深深的影响着后世的学者们。
好了,闲话不多扯,进⼊主题。
⾸先,我们来看⼀下定义:拉格朗⽇定理初看起来,头⽪发⿇。
不着急,我们慢慢来。
⽼规矩,上图。
图1:拉格朗⽇:(⼀)假设我们知道f'(x)的函数图像,如图1中⿊⾊曲线所⽰。
那么f(b)则对应图1中蓝⾊区域⾯积。
同理,f(a)则对应图2中红⾊区域⾯积。
图2:拉格朗⽇(⼆)因此,f(b) - f(a) 则是蓝⾊⾯积减去红⾊⾯积。
图3:拉格朗⽇(三)现在我们来仔细看⼀看图3,是不是发现拉格朗⽇定理中的f(b) - f(a)和b - a都出现在了图3中。
图4:拉格朗⽇(四)(x, f'(x)), a<x<b。
我们在f'(x)曲线上有⼀红点,该点坐标为(因此,拉格朗⽇定理可以转变为:橙红⾊区域⾯积。
在开区间(a,b)内,⼀定存在⼀点使得图4中⿊⾊斜纹区域⾯积 = 橙红⾊区域⾯积03 拉格朗⽇定理的物理解读在时间b处,速度为f'(b),在时间a处,速度为f'(a)。
第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。
总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。
2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。
3﹑全解:) y (t )=)()(t y t y p n + 响应。
)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。
+0(2)不能将{)(-n 0y }作为微分方程初始条件。
(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。
(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。
(2))(t y zs 求解:经典法﹑卷积积分法。
二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。
对作图法适用条件的讨论及三种采用作图法进行定量分析的方法的介绍完成日期:2013/12/08作者:刘璐许令玮陈蔚玮余卓燃工学院一、摘要在“比色法测定三价铁含量”的实验中,我们采用了分光光度法对样品中三价铁含量进行定量分析。
在测量样品前,通常需要测量一系列已知准确浓度的标准溶液的吸光度,作出工作曲线。
那么,在什么条件下我们可以应用作图法呢?本文对对作图法适用条件进行了讨论,并列举出三种采用作图法进行定量分析的方法,说明作图法的广泛运用。
二、前言作图法处理实验数据可形象、直观地显示出物理量之间的函数关系,从而可以通过形象的图像研究研究对象的性质与变化规律。
因此在科研与生产中,作图法是一种被广泛应用的表达工具,不仅仅是化工领域,几乎在所有科研领域都能看到作图法的应用,所以,正确地认识作图法的适用条件,能帮助我们更好地进行科学研究工作。
三、内容(一)、作图法用作图法表示实验数据,能直观地显示出所研究的变量的变化规律,如极大值、极小值、转折点、周期性和变化速率等重要特性,并可从图上简便地找出各变量的中间值,还便于数据的分析比较,确定经验方程式的常数,有时还可以利用图形求得用测量方法难以获得的量。
由于作图法的适用条件是建立在作图法的应用上的,因此我们通过讨论作图法的应用,进而了解在什么情况下我们可以采用作图法得到我们想要的数据。
作图法的应用有:1、表达变量间的定量依赖关系。
这是作图法最基本的应用。
以自变量为横坐标,因变量为纵坐标,在坐标纸上标绘出实验数据的坐标(x , y),然后按一定的原则连成一条平滑的曲线,该曲线即表示两个变量间的定量依赖关系。
在曲线所示的范围内,可方便地从曲线上读出对应于自变量任意数值的因变量的数值。
2、求极值或转折点。
函数的极大值、极小值、和转折点,在图形上表现得很直观。
因此,在实验数据处理中需要求极值或转折点时,常用作图法。
3、求外推值。
当需要的数据不能或不易直接测定时,在适当的条件下,常可用作图外推的方法求得。
图解微分法和图解积分法
一些在数学上有微积分关系的物理量,常可用图解微分法和图解积分法进行研究。
例如已知机构的位移曲线后,可不必通过机构各个位置的速度图解和加速度图解,直接用图解微分法作出相应的速度曲线和加速度曲线。
一.图解微分法
现以由位移曲线求速度为例,进行说明。
设有一位移曲线()t s s =,如图1-1所示,纵坐标y 代表位移s ,所用的比例尺为⎪⎭
⎫ ⎝⎛mm m s μ,横坐标x 代表时间t ,所用的比例尺为⎪⎭
⎫ ⎝⎛m m s t μ。
求位移曲线上某点C的速度是,如能作出该点的切线t-t ,则所作切线的斜率即该点的速度。
由于切线不容易准确作出,在工程上常用邻近两点弦线的斜率来作为切线的斜率。
在C点左右做两条离开C点有等距的纵坐标线与位移曲线相交于l 及n 点,由于弦线ln 与中点C的切线接近平行,所以C点的速度可表示为
x
y dx dy dt ds v t S t S ∆∆===μμμμ (1-1)
图1-1
一般Δx 取得最小时,弦线的斜率就和中点切线的斜率越为接近,因而算出速度的精确度也较高。
为了节省计算和作图的工作量,一般常取各个时间间隔的Δx 相等,于是可将上式中的()x t s ∆μμ/合成为一个常数K ,从而只要依次量出各个时间间隔的Δy ,就可算出相应各时间间隔中点的速度,即
()y K v ∆= (1-2)
例如在图1-1中C 、D 点的速度分别等于K (mn )、K (pq )。
速度算出后,再选择适当的速度比例尺μv进行换算,即可作出速度曲线。
为了更简捷地作出速度曲线,可将式(1-1)改写成包含弦线与横坐标轴倾角α的形式:
αμαμμαμμtan tan tan H H H
dt ds v v t S t S =⋅=== (1-3) 式中 ()
mm s m H t s v μμμ/= (1-4) 如图1-1所示,在速度曲线的横坐标轴上,由原点O 向左取一定长度H ,得p 点,作射线pc//ln ,于是线段Oc =H tan α,这样C 点的速度可直接用线段Oc 表示,但此时所作速度比例尺μv并非任取,而是由式(1-4)导出。
图1-2所示为上述图解微分法在作机构速度线图中的应用。
由位移曲线)(t s s =作速度曲线)(t v v =的步骤如下:
图1-2
1)将)(t s s =曲线的横坐标分成若干等分(图中为十二等分),过这些等分点作纵坐标线与曲线相交的点1‘、2‘、3’、…;
2)过点0、1‘、2‘、3’、…作弦线01‘、1‘2‘、2‘3’、…;
3)在速度曲线的横坐标轴上,自原点O 向左选取一段等于Hmm 的合适距离,得p 点;
4)过p 点引平行于各弦线01‘、1‘2‘、2‘3’、…的射线,它们与纵坐标轴相交于1、2、3、…等点;
5)将所得1、2、3、…各点分别投影到相应的纵坐标线上,得到一系列长方形(图中用阴影线表示);
6)过坐标原点O 及各长方形顶边中点a 、b 、c 、…等连成圆滑曲线,即得所求的速度曲线)(t v v =。
二.图解积分法
图解积分法是用作图方法求出待积曲线下一个个区间的面积,它也是图解微分的逆过程。
仍以图1-2为例,由速度曲线)(t v v =求位移曲线)(t s s =。
将)(t v v =曲线的横坐标分成若干等分,并在曲线上定出各等分的中点a 、b 、c 、…,把这些中点投影到纵坐标轴上,得1、2、3、…等点。
由横坐标轴上距原点O 为定长H 的p 点连直线p 1、p 2、p 3、…。
接着在位移图上,自原点O 开始,按01、12、23、…等区间,依次作与射线p 1、p 2、p 3、…分别平行的线段01‘、1‘2‘、2‘3’、…等。
将所得0、1‘、2‘、3’、…各点连成圆滑曲线,即为所求的位移曲线)(t s s =。
这样作图的位移比例尺μs可由式(1-4)算出,即
mm
m H
t v s μμμ= (1-5) 图解微分和图解积分,虽然做法简单,但是由于作图误差,不够精确。
下列两个数学关系值得在作图时遵守:
1) 原函数曲线上有最大或最小值的点,必与导函数曲线上为零的点相对应;
2) 原函数曲线上的转折点,必与导函数曲线上最大或最小值的点相对应。