随机过程例题
- 格式:ppt
- 大小:454.00 KB
- 文档页数:27
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
习题一1. 某战士有两支枪,射击某目标时命中率分别为0.9及0.5,若随机地用一支枪,射击一发子弹后发现命中目标,问此枪是哪一支的概率分别为多大?2. 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>+0012x x x A求:(1)常数A; (2)分布函数F (x );(3)随机变量Y =lnX 的分布函数及概率分布。
3. 设随机变量(X, Y )的概率密度为 f (x , y) = Asin (x + y ), 0≤x ,y ≤2π 求:(1) 常数A ;(2)数学期望EX ,EY ; (3) 方差DX ,DY ;(4) 协方差及相关系数。
4. 设随机变量X 服从指数分布⎩⎨⎧<≥=-0)(x x ke x f kx()0>k 求特征函数)(x ϕ,并求数学期望和方差。
5. 设随机变量X 与Y 相互独立,且分别服从参数为λ1 和λ2的泊松分布,试用特征函数求Z = X +Y 随机变量的概率分布。
6.一名矿工陷进一个三扇门的矿井中。
第一扇门通到一个隧道,走两小时后他可到达安全区。
第二扇门通到又一隧道,走三个小时会使他回到这矿井中。
第三扇门通到另一隧道,走五个小时后,仍会使他回到这矿井中。
假定矿井中漆黑一团,这矿工总是等可能地在三扇门中选择一扇,让我们计算矿工到达安全区的时间X 的矩母函数。
7. 设 (X , Y ) 的分布密度为(1) ⎩⎨⎧<<<<=其他,,010,10xy 4),(y x y x φ(2)⎩⎨⎧<<<<=其他,,010,10xy 8),(y x y x φ问X ,Y 是否相互独立?8. 设(X ,Y )的联合分布密度为问: (1)α, β取何值时X ,Y 不相关; (2)α,β取何值时相互独立。
习题二1.设有两个随机变量X 、Y相互独立,它们的概率度分别为)(x f X 和)(y f Y ,定义如下随机过程:Yt X t Z +=)(,R t ∈试求)(t Z 的均值函数)(t m 和相关函数),(21t t R 。
随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
随机过程例题例1 求正态随机变量),0(~2σN X 的特征函数和各阶矩。
解:),0(~2σN X 的概率密度函数为+∞<<∞-=-x x f x ,e 21)(222σσπ2j 2j 2222ed e e 21d e )()(ωσωσωσπω-∞∞--∞∞-===Φ⎰⎰x x x f x x x⎩⎨⎧-⨯⨯⨯⨯=Φ-==为偶数(为奇数n n n X E n n X n nn,)1531 ,0d )(d )j ()(0σωωω例2 设随机变量X 服从标准正态分布N(0, 1),定义随机变量Y = X2,求Y 的概率密度函数和数学期望。
解:X 的概率密度为:y -x y x h(y) = x , x = g(x) =y 112==,,Y 的概率密度函数为:0 ,e 212)(2)(d d )()(2≥=-+==-y y yy f y y f y xx f y yπψY 的数学期望为:1d e2d )()(02===⎰⎰∞-∞+∞-y y y y y Y E y πψ1d e 2d )()()]([)(222====⎰⎰∞+∞--∞+∞-x x x x f x g X g E Y E x π例3 已知随机相位正弦波 )Θ +t cos( a = (t) X ω),其中 a >0,ω为常数,Θ 为在),(π20内均匀分布的随机变量。
求随机过程} ) (0, t (t),X {∞∈的均值函数)t (m X 和相关函数 t)(s,R X解:f ()(,cos 2)](cos[2),(0)(22s t a s t a t s R t m X X -==-==τωτω 例4 设 X (t) 为信号过程,Y (t) 为噪声过程,令W (t) = X (t) + Y (t),则 W (t) 的均值函数为:)()()(t m t m t m Y X W +=),(R ),(R ),(R ),(R ),(R t s t s t s t s t s Y YX XY X W +++=例5 求在[0, 1]区间均匀分布的独立随机序列的均值向量、自相关阵和协方差阵,设N = 3。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
1,若从t=0开始每隔0.5秒抛一枚均匀的硬币作试验,定义随机过程X(t)={cosπt,t时刻抛得正面2t, t时刻抛得反面求:(1)X(t)的一维分布函数F(12;x)和F(1;x)(2)X(t)的二维分布函数F(0.5,1;x1,x2)(2)X(t)的均值函数μx(t)和方差函数σX2(t)解:硬币出现正、反面得概率均为1/2F(0.5,1;x1,x2 )=F(0.5;x1)F(1;x2)={0,x1<0或x2<−112,0≤x1≤1或x2≥2或x1≥1,−1≤x2<214,0≤x1<1,−1≤x2<21,x1≥1,x2≥22,设为参数为σ2的维纳过程, 求积分过程的均值函数和相关函数。
解:设,由与的对称性维纳过程是均方连续, 均方不可导, 均方可积的二阶矩过程.假设乘客按照参数为λ的poisson过程来到一个火车站乘坐某次列车,若火车在时刻t启程,试求在[0,t]内到达车站乘坐该次列车的乘客等待时间总和的数学期望。
设在时间间隔[0,τ]内到达的乘客数为,则时间间隔[0,t]内乘客的总等待时间为某人备有r把伞用于上下班. 如果一天的开始他在家(一天的结束他在办公室)中而且天下雨,只要有伞可取到,他将拿一把到办公室(家)中. 若天不下雨那么他不带伞.假设每天的开始(结束)下雨的概率为p,且与之前下不下雨独立.(1)定义一个有r+1个状态的Markov链并确定转移概率;(2)计算极限分布;(3)这人被雨淋湿的平均次数,所占比率是多少(称天下雨而全部伞却在另一边为被淋湿)?设{Xn}为此人在第n天身边拥有的雨伞数,则I={0, 1,2,…,r},注意到下雨才用伞,而每天的开始下不下雨与之前独立,即知为Markov链.该链的一步转移概率为:于是计算极限分布的状态方程,记显然处于的极限状态才可能被淋湿,但每天的开始(结束)下雨的概率为p, 所以此人被雨淋湿的平均次数,所占比率即被淋湿的概率为某一个只有一名理发师的理发部,至多容纳4名顾客。
以下是一个关于通信原理中随机过程的例题:
题目:已知随机过程X(t) 的自相关函数为R(τ) = ρδ(τ) + (1 -ρ)δ(τ- T),其中ρ是常数,T 是时间周期。
求该随机过程的功率谱密度P(ω)。
解:首先,我们需要知道自相关函数和功率谱密度之间的关系。
对于一个随机过程X(t),其功率谱密度P(ω) 是其自相关函数R(τ) 的傅里叶变换。
根据傅里叶变换的性质,对于函数f(t),其傅里叶变换为F(ω) = ∫f(t)e^(-iωt) dt。
对于给定的自相关函数R(τ),我们可以将其拆分为两部分:ρδ(τ) 和(1 -ρ)δ(τ- T)。
对于ρδ(τ),其傅里叶变换为ρ/2π。
对于(1 -ρ)δ(τ- T),其傅里叶变换为(1 -ρ)e^(-iωT)/2π。
因此,整个随机过程的傅里叶变换为:
P(ω) = ρ/2π+ (1 -ρ)e^(-iωT)/2π
这就是该随机过程的功率谱密度P(ω)。
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。