燕庆明 信号与系统 习题答案
- 格式:doc
- 大小:4.92 MB
- 文档页数:68
信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统教程燕庆明答案【篇一:信号与系统课后习题】t)?tf(t?td),tf(t?t0)?yf(t?t0)?,yf(t?t0)?(t?t0)f(t?t0)。
(3)令g(t)?f(t?t0),t[g(t)]?g(?t)?f(?t?t0),tf(t?t0)? yf(t?t0),yf(t?t0)?f(?t?t0)1.2.已知某系统输入f(t)与输出y(t)的关系为y(t)?f(t)判断该系统是否为线性时不变系统?解:设t为系统运算子,则y(t)可以表示为y(t)?t[f(t)]?f(t),不失一般性,设f(t)?f1(t)?f2(t)t[f1(t)]?f1(t)?y1(t),t[f(t)]?f1(t)?f2(t)?y(t),显然其不相等,即为非线性时不变系统。
df(t)tf(x)dx(2):[y(t)]2?y(t)?f(t) 1.3判断下列方程所表示系统的性(1):y(t)?0dt(3):y(t)?2y(t)?3y(t)?f(t)?f(t?2)(4):y(t)?2ty(t)?2y(t)?3f(t) 线性非线性时不变线性时不变线性时变1.4。
试证明方程y(t)+ay(t)=f(t)所描述的系统为线性系统。
证明:不失一般性,设输入有两个分量,且f1(t)→y1(t),f2(t)→y2(t) 则有y1(t)+ay1(t)=f1(t),y2(t)+ay2(t)=f2(t) 相加得y1+ay1(t)+y2(t)+ay2(t)=f1(t)+f2(t) 即d[y1(t)+y2(t)]+a[y1(t)+y2(t)] dt=f1(t)+f2(t)可见f1(t)+f2(t)→y1(t)+y2(t)即满足可加性,齐次性是显然的。
故系统为线性的。
1.5。
证明1.4满足时不变性。
证明将方程中的t换为t-t0,t0为常数。
即y(t-t0)+ay(t-t0)=f(t-t0) 由链导发则,有dy(t?t0)dtd(t?t0)dy(t?t0)d(t?t0)dy(t?t0)dy(t?t0)1从而又因t0为常数,故所以有 ??dtd(t?t0)dtdtd(t?t0)dy(t?t0)ay(tt0)f(tt0)即满足时不变性f(t-t0)→y(t-t0) dty(t)?y(t?t0)f(t)?f(t??t)?所以ttlimf(t)?f(t??t)limy(t)?f(t?t0)既有 f(t)?y(t) ?t0t0tt1.7 若有线性时不变系统的方程为y(t)+ay(t)=f(t)在非零f(t)作用下其响应y(t)=1-e-t,试求方程y(t)+ay(t)=2f(t)+f(t)的响应。
《信号与系统》(第5版)习题解答燕庆明鲁纯熙高等教育出版社2014年8月目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (24)第5章习题解析 (32)第6章习题解析............................................................................ 错误!未定义书签。
第7章习题解析 (50)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= t t i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
1-2 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为 )()]([)(t f t f T t y == 则 )()()]([111t y t f t f T == )()()]([222t y t f t f T == 不失一般性,设f ( t ) = f 1( t ) + f 2( t ),故有 )()()]([)(21t f t f t f T t y +==)()(21t f t f +≠ 即不满足可加性,为非线性系统。
)]([)()()()]([00000t t f T t t f t t y t t f t t f T -=-=--=-故为时不变系统,综合起来为非线性时不变系统1-3 判断下列方程所表示的系统的性质。
(b) )2()()(3)(2)(-+'=+'+''t f t f t y t y t y (c) )(3)(2)(2)(t f t y t y t t y =+'+''解 (b )是线性常系数微分方程,为线性时不变系统; (c)是线性微分方程,但不是常系数,为线性时变系统。
1-11 由图f(t)画出的f(2t-2)波形)0,2()22()0,2()(),1,5.1()22()1,1()()1,5.1()22()1,1()(),0,1()22()0,0()(的的的的的的的的-→--→--→-→t f t f t f t f t f t f t f t f1-15 计算下列结果)0)3(3(0d )3()()(21d )()3πcos(d )()3πcos()(21200=-≠=-+=-=-⎰⎰⎰-∞∞--t t t t t t c t t t t t b δδδδω时1-17 计算下列各式211])([1d )(d )(d )]()([)()(2)(2)()()]([)()()1()(02222=+='-+='+='+=+-=-=-=-∞+∞--∞+∞--∞+∞------⎰⎰⎰t t t t t t t tt e t t e t t e t t t e b t e t e t t t e dtd dt t d te dt d a δδδδεεδδεεε2-3 设有二阶系统方程 0)(4)(4)(=+'+''t y t y t y 在某起始状态下的0+起始值为2)0(,1)0(='=++y y ,试求零输入响应。
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
《信号与系统》(第3版)习题解析高等教育出版社目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。
题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= t t i L t u L L d )(d )(= ⎰∞-=t C C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。
S R S L S C题1-4图解 系统为反馈联接形式。
设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有 )()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T ==)()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。
1-6 判断下列方程所表示的系统的性质。
(1) ⎰+=t f tt f t y 0d )(d )(d )(ττ (2) )()(3)()(t f t y t y t y '=+'+''(3) )(3)()(2t f t y t y t =+'(4) )()()]([2t f t y t y =+'解 (1)线性;(2)线性时不变;(3)线性时变;(4)非线性时不变。
1-7 试证明方程)()()(t f t ay t y =+'所描述的系统为线性系统。
式中a 为常量。
证明 不失一般性,设输入有两个分量,且)()()()(2211t y t f t y t f →→,则有)()()(111t f t ay t y =+')()()(222t f t ay t y =+'相加得)()()()()()(212211t f t f t ay t y t ay t y +=+'++'即[][])()()()()()(d d212121t f t f t y t y a t y t y t +=+++可见)()()()(2121t y t y t f t f +→+即满足可加性,齐次性是显然的。
故系统为线性的。
1-8 若有线性时不变系统的方程为)()()(t f t ay t y =+'若在非零f ( t )作用下其响应t t y --=e 1)(,试求方程)()(2)()(t f t f t ay t y '+=+'的响应。
解 因为f ( t ) →t t y --=e 1)(,由线性关系,则)e 1(2)(2)(2t t y t f --=→由线性系统的微分特性,有t t y t f -='→'e )()(故响应t t t t y t f t f ----=+-=→'+e 2e )e 1(2)()()(2第2章习题解析2-1 如图2-1所示系统,试以u C ( t )为输出列出其微分方程。
题2-1图解 由图示,有 t u C R u i d d CC L +=又⎰-=tt u u L i 0C S L d )(1故C CC S )(1u C R u u u L ''+'=-从而得)(1)(1)(1)(S C C C t u LC t u LC t u RC t u =+'+''2-2 设有二阶系统方程0)(4)(4)(=+'+''t y t y t y在某起始状态下的0+起始值为2)0(,1)0(='=++y y试求零输入响应。
解 由特征方程λ2 + 4λ + 4 =0得 λ1 = λ2 = -2则零输入响应形式为t e t A A t y 221zi )()(-+=由于y zi ( 0+ ) = A 1 = 1-2A 1 + A 2 = 2所以A 2 = 4故有0,)41()(2zi ≥+=-t e t t y t2-3 设有如下函数f ( t ),试分别画出它们的波形。
(a) f ( t ) = 2ε( t -1 ) - 2ε( t -2 )(b) f ( t ) = sin πt [ε( t ) - ε( t -6 )]解 (a)和(b)的波形如图p2-3所示。
图p2-32-4 试用阶跃函数的组合表示题2-4图所示信号。
题2-4图解 (a) f ( t ) = ε( t ) - 2ε( t -1 ) + ε( t -2 )(b) f ( t ) = ε( t ) + 2ε( t -T ) + 3ε( t -2T )2-5 试计算下列结果。
(1) t δ( t - 1 )(2)⎰∞∞--t t t d )1(δ (3) ⎰∞--0d )()3πcos(t t t δω (4)⎰+---003d )(e t t t δ解 (1) t δ( t - 1 ) = δ( t - 1 )(2)1d )1(d )1(=-=-⎰⎰∞∞-∞∞-t t t t t δδ(3) 21d )()3πcos(d )()3πcos(00=-=-⎰⎰∞∞--t t t t t δδω (4)1d )(d )(e d )(e 00003003===-⎰⎰⎰+-+-+---t t t t t t t t δδδ2-6 设有题2-6图示信号f ( t ),对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。
题2-6图解 (a)20,21≤≤t f ' ( t ) = δ( t - 2 ), t = 2-2δ( t - 4 ), t = 4(b) f " ( t ) = 2δ( t ) - 2δ( t - 1 ) - 2δ( t - 3 ) + 2δ( t - 4 )图p2-62-7 如题2-7图一阶系统,对(a)求冲激响应i 和u L ,对(b)求冲激响应u C 和i C ,并画出它们的波形。
题2-7图解 由图(a)有Ri t u t i L -=)(d d S 即)(1d d S t u Li L R t i =+ 当u S ( t ) = δ( t ),则冲激响应)(e 1)()(t L t i t h t L Rε⋅==- 则电压冲激响应)(e )(d d )()(L t L R t t i L t u t h t L Rεδ⋅-===- 对于图(b)RC 电路,有方程R u i t u CC S C d d -=即S C C11i Cu RC u =+' 当i S = δ( t )时,则)(e 1)()(C t Ct u t h RC tε⋅==-同时,电流)(e 1)(d d C C t RCt t u C i RCtεδ⋅-==-2-8 设有一阶系统方程)()()(3)(t f t f t y t y +'=+'试求其冲激响应h ( t )和阶跃响应s ( t )。
解 因方程的特征根λ = -3,故有)(e )(31t t x t ε⋅=-当h ( t ) = δ( t )时,则冲激响应)(e 2)()]()([)()(31t t t t t x t h t εδδδ⋅-=+'*=-阶跃响应)()e 21(31d )()(30t h t s t t εττ-+==⎰2-9 试求下列卷积。
(a) ε( t + 3 ) * ε( t - 5 )(b) δ( t ) * 2(c) t e -t ⋅ε( t ) * δ' ( t )解 (a) 按定义ε( t + 3 ) * ε( t - 5 ) =⎰∞∞---+ττετεd )5()3(t考虑到τ < -3时,ε( τ + 3 ) = 0;τ > t -5时,ε( t -τ - 5 ) = 0,故ε( t + 3 ) * ε( t - 5 ) =2,2d 53>-=⎰--t t t τ也可以利用迟延性质计算该卷积。
因为ε( t ) * ε( t ) = t ε( t )f1( t-t1 ) * f2( t-t2 ) = f( t-t1-t2 )故对本题,有ε( t + 3 ) * ε( t- 5 ) = ( t + 3 - 5 )ε( t + 3 - 5 ) = ( t- 2 )ε( t- 2 ) 两种方法结果一致。
(b) 由δ( t )的特点,故δ( t ) * 2 = 2(c) t e-t⋅ε( t ) * δ'( t ) = [t e-tε( t )]' = ( e-t-t e-t )ε( t )2-10对图示信号,求f1( t ) * f2( t )。
题2-10图解(a)先借用阶跃信号表示f1( t )和f2( t ),即f1( t ) = 2ε( t ) - 2ε( t- 1 )f2( t ) = ε( t ) -ε( t- 2 )故f1( t ) * f2( t ) = [2ε( t ) - 2ε( t- 1 )] * [ε( t ) -ε( t- 2 )]因为ε( t ) * ε( t ) = ⎰t0d1τ= tε( t )故有f 1( t ) * f 2( t ) = 2t ε( t ) - 2( t - 1 )ε( t - 1 ) -2( t - 2 )ε( t - 2 ) + 2( t - 3 )ε( t - 3 )读者也可以用图形扫描法计算之。