6学通数学奥数组合数学专题-14 构造论证(二)
- 格式:pdf
- 大小:1.36 MB
- 文档页数:9
组合证明题,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.1.某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书4、B、C,使得甲读过A、B,没读过C,乙读过B、C,没读过A?说明判断过程.【分析与解】首先从读书数最多的学生中找一人甲.由题设,甲至少有一本书未读过,记为C.设B是甲读过的书中一本,由题意知,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以一定可以找出一本书A,使得甲读过而乙未读过,否则乙就比甲至少多读过一本书.这样一来,甲读过A、B,未读过C;乙读过B、C未读过A.因此可以找到满足要求的两个学生.2.甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24 ?【分析与解】不妨设甲、乙比赛时,1~15号是男女对垒,乙、丙比赛时.在1~15号中有a台男女对垒,15号之后有9-a台男女对垒(0≤a≤9)甲、丙比赛时,前15号,男女对垒的台数是15-a(如果1号乙与1号丙是男女对垒,那么1号甲与1号丙就不是男女对垒),15号之后,有9-a台男女对垒.所以甲、丙比赛时,男女对垒的台数为15-a+9-a=24-2a≤24.仅在a=0,即必须乙、丙比赛时男、女对垒的号码,与甲、乙比赛时男、女对垒的号码完全不同,甲、丙比赛时,男、女对垒的台数才等于24.3.将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法.分得的长方形中必有两个是完全相同的.【分析与解】 10个边长为整数的长方形,其面积显然也均是正整数.划分出的长方形按面积从小到大为:1×1,1×2,l×3,1×4,2×2,1×5,1×6,2×3,1×7,1×8,2×4,1×9,3×3.2×5,2×6,3×4,2×7,3×5,2×8,4×4,2×9,3×6,……从这些长方形中选出lO个不同的长方形,其面积和最小为:1×1+1×2+1×3+1×4+2×2+1×5+1×6+2×3+1×7+1×8=46.而原长方形的面积为5×9=45<46.所以分出的长方形必定有某两个是完全一样的.4.将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.【分析与解】如果找不到两行的某种颜色数一样,那么就是说所有颜色的列与列之问的数目不同.那么红色最少也会占:0+1+2+…+14=105个格子.同样蓝色和绿色也是,这样就必须有至少:3×(0+l+2+…+14)=315个格子.但是,现在只有15×15=225个格子,所以和条件违背,假设不成立,结论得证.5. 有9位数学家,每人至多能讲3种语言,每3个人中至少有2个人有共通的语言.求证:在这些数学家中至少有3人能用同一种语言交谈.【分析与解】假设任意三位数学家都没有共同会的语言,这表明每种语言至多有两人会说.即这九位数学家为A、B、C、D、E、F、G、I.由于一位数学家最多会三种语言,而每种语言至多有两人会说,所以一位数学家至多能和另外三人通话,即至少与五人语言不通.不妨设A不能与B、C、D、E、F通话.同理,B也至多能和三人通话,因此在C、D、E、F中至少有一人与B语言不通,设为C.则A、B、C三人中任意两人都没有共同语言,与题意矛盾.这表明假设不成立,结论得证.6. 4个人聚会,每人各带2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.【分析与解】将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线.由于每人送出2件礼物,图中共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线.四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线. 即为所证结论。
构造与论证教学目标1.掌握最佳安排和选择方案的组合问题.2.利用基本染色去解决相关图论问题.知识点拨知识点说明各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.知识点拨板块一、最佳安排和选择方案【例 1】5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证【难度】2星【题型】解答【解析】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.【答案】10次【例 2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例 3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例 5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例 6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证【难度】4星【题型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证【难度】4星【题型】解答【解析】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
构造法求数列通项公式典型例题解析构造法是一种求解数列通项公式的有效方法,也是数学中最具有挑战性的问题之一。
在广泛的数学研究和应用中,构造法往往可以解决复杂的问题,为我们提供求解给定数列的通项公式的有效方法。
本文将从构造法的基本定义和思想出发,通过一系列典型例题,详细解析构造法求解数列通项公式的基本原理和方法,以期更深入地理解构造法求数列通项公式的实际应用。
首先,构造法是什么?构造法是一种求解数列通项公式的策略,它以建立数列通项公式为目标,通过构造一个符合一定规律的数列来解决问题。
根据构造法的思想,我们可以确定以下步骤:首先,确定数列的个数和元素的值;其次,当确定了数列的个数和元素的值后,还需要确定数列的规律;最后,根据上述步骤,数列的规律和期望求解结果,最终确定数列通项公式。
构造法求解数列通项公式的典型例题,将从比较简单的例题开始介绍:例题1:已知数列{an}的通项公式为:an=3n-2,求数列{an}的前5项。
解:数列{an}的前5项为a1=3×1-2=1,a2=3×2-2=4,a3=3×3-2=7,a4=3×4-2=10,a5=3×5-2=13。
例题2:已知数列{bn}的前4项为:b1=2,b2=10,b3=26,b4=50,求数列{bn}的通项公式。
解:根据数列{bn}的前4项值,构造出以下数列:2,8,16,24,…,由此可得出bn=2n×4,即数列{bn}的通项公式为bn=2n×4。
例题3:已知数列{cn}的前3项为:c1=3,c2=12,c3=27,求数列{cn}的通项公式。
解:根据数列{cn}的前3项值,构造出以下数列:9,9,18,27,…,故数列{cn}的通项公式为cn=3n2-2n,即cn=3n2-2n。
以上就是构造法求解数列通项公式的三个典型例题及其解析,可以看出,构造法是一种有效的求解数列通项公式的方法。
在证明一些存在性问题时,我们可以考虑把满足题意要求的数学对象构造出来,问题也自然得到了证明。
这种方法就叫做构造法。
构造法是一种重要的数学方法,一些数论问题也可以通过构造出某些特殊结构、特殊性质的数的组合来解决,另在解决一些图形、逻辑推理方面的问题时,也可以通过构造出来某些我们熟悉的情境,然后进行解答就容易多了。
构造法解题的步骤一般为先观察问题的条件,对其进行分析和重组,或对问题进行特殊化考虑,找出构造的方案,然后进行检验,得出问题的解。
[例1] 如图1所示,在三角形ABC中,BD=2DC,AE=2ED,FC=7,那么AF=[例2】有人说:“任何七个连续的自然数中一定有质数”,请你举一个例子说明这句话是错的。
思路剖析本题实际上是要证明:七个连续的自然数有可能全部是合数,这就成了一个存在性的证明题,只要用构造的方法,构造一个例子,便可以说明。
解答取数a=2×3×4×5×6×7×8则a+2,a+3,a+4,a+5,a+6,a+7,a+8这七个数全部是合数,且为连续的自然数。
故“任何七个连续的自然数中一定有质数”这句话是错的。
[例3] 是否在平面上存在这样的40条直线,它们共有365个交点?思路剖析这是一个证明存在性的问题,我们可以用构造法为构造出符合要求的方案,先从一些特殊图形进行考虑。
解答先考虑一种特殊的图形:围棋盘。
它有38条直线、361个交点。
为构造出40条直线有365个交点的情形。
我们就从这种特殊的图形出发,进行局部的调整。
先加上2条对角线,这样就有40条直线了,但交点仍然是361个。
再将最右边的l条直线向右平移1段,正好增加了4个交点(见图3)。
于是,我们就得到了有365个交点的40条直线。
[例4】如图4所示,将图中的A、B、C、D、E五点染色,使相邻的(即有线段相连的)点有不同的颜色,至少需要几种颜色?思路剖析将A、B、C、D、E五点染色,只用一种颜色肯定是不够的,如果我们能构造出一种符合条件的染色方法,只需要2种颜色,也就找到了答案。
目录第21讲构造论证二 (1)兴趣篇 (1)拓展篇 (4)超越篇 (8)第21讲构造论证二兴趣篇1、如图所示,在66的警戒方格内,每个哨所可以监视横、竖、斜方向的全部单位方格。
现在已经建了两个哨所。
请你挑选一个方格,再建立一个哨所,使得所有的方格都被监视到。
【分析】第二行第三列2、(1)把1,2,3,…,8,9按合适的顺序填在图1第二行的空格中,使得每一列上、下两数之和都是平方数。
(2)能否将1,2,3,…,10,11按合适的顺序填在图2第二行的空格中,使得每一列上、下两数之和都是平方数?【分析】(1)考虑到9只能和7配,先填入9和7;剩下的6只能和3配,4只能和5配,依次填好;所以从左至右填入的数依次是8,2,6,5,4,3,9,1,7;(2)考虑11只能和5配,那么没有数和4配,不能3、今有长度为1,2,3,…,198,199的金属杆各一根。
请问:能否用上全部的金属杆,不弯曲其中的任何一根,把它们焊接成:(1)一个正方体框架;(2)一个长方体框架?【分析】(1)总长(1199)199219900+⨯÷=,不是12的倍数,不能;⨯,可以分别为4577、199、199(2)能,此时长方体框架的长、宽、高之和为199254、老师对六位同学的三门功课语文、数学、体育进行了一次测验,六位同学的体育得分是1分或者2分,数学得分是1分、2分或者3分,语文得分是1分、2分、3分或者4分。
如果一位同学的三门功课成绩都不低于另一个同学的三门功课成绩,就说这个同学比另一个同学优秀。
测验完成后老师发现这六位同学谁也不比别人优秀,请问:这六位同学三科得分分别为多少?【分析】这6位同学在三门课上的得分分别是(1分,1分,4分),(1分,2分,3分),(1分,3分,2分),(2分,1分,3分),(2分,2分,2分),(2分,3分,1分)5、把图中的圆圈任意涂上红色或蓝色。
问:能否使得每一条直线上的红圈个数都是奇数?【分析】如果每边红色圈数目都是奇数,那么5条边总红色圈个数就是奇数;而实际上每个红圈被计算了2次,总红色圈数目是2的倍数,是偶数,矛盾,所以不能6、(1)能否在44⨯的方格表的各个小方格内分别填入数1,2,…,15,16,使得从每行中都可以选择若干个数,这些数的和等于该行中其余各数之和?(2)能否在55⨯方格表的各个小方格内分别填入数1,2,…,24,25,使得从每行中都可以选择若干个数,这些数的和等于该行中其余各数之和?(2)如果可以的话,每行数字和都是偶数,那么总数字和是偶数,而1~16的数字和是奇数,矛盾,所以不能7、如图是把一张66⨯的方格纸去掉两个角所得的图形。
構造與論證教學目標1.掌握最佳安排和選擇方案的組合問題.2.利用基本染色去解決相關圖論問題.知識點撥知識點說明各種探討給定要求能否實現,在論證中,有時需進行分類討論,有時則要著眼於極端情形,或從整體把握.設計最佳安排和選擇方案的組合問題,這裏的最佳通常指某個量達到最大或最小.解題時,既要構造出取得最值的具體實例,又要對此方案的最優性進行論證.論證中的常用手段包括抽屜原則、整除性分析和不等式估計.組合證明題,在論證中,有時需進行分類討論,有時則需要著眼於極端情況,或從整體把握。
若干點及連接它們的一些線段組成圖,與此相關的題目稱為圖論問題。
若干點及連接它們的一些線段組成圖,與此相關的題目稱為圖論問題,這裏宜從特殊的點或線著手進行分析.各種以染色為內容,或通過染色求解的組合問題,基本的染色方式有相間染色與條形染色.知識點撥板塊一、最佳安排和選擇方案【例 1】5卷本百科全書按從第1卷到第5卷的遞增序號排列,今要將它們變為反序排列,即從第5卷到第1卷.如果每次只能調換相鄰的兩卷,那麼最少要調換多少次?【考點】構造與論證【難度】2星【題型】解答【解析】因為必須是調換相鄰的兩卷,將第5卷調至原來第1卷的位置最少需4次,得到的順序為51234;現在將第4卷調至此時第1卷的位置最少需3次,得到的順序為54123;現在將第3卷調至此時第1卷的位置最少需2次,得到的順序為54312;最後將第1卷和第2卷對調即可.所以,共需調換4+3+2+1=10次.【答案】10次【例 2】在2009張卡片上分別寫著數字1、2、3、4、……、2009,現在將卡片的順序打亂,讓空白面朝上,並在空白面上又分別寫上1、2、3、4、……、2009.然後將每一張卡片正反兩個面上的數字相加,再將這2009個和相乘,所得的積能否確定是奇數還是偶數?【考點】構造與論證【難度】3星【題型】解答【解析】從整體進行考慮.所得的2009個和相加,便等於1~2009的所有數的總和的2倍,是個偶數.2009個數的和是偶數,說明這2009個數中必有偶數,那麼這2009個數的乘積是偶數.本題也可以考慮其中的奇數.由於1~2009中有1005個奇數,那麼正反兩面共有2010個奇數,而只有2009張卡片,根據抽屜原理,其中必有2個奇數在同一張卡片上,那麼這張卡片上的數字的和是偶數,從而所有2009個和的乘積也是偶數.【答案】偶數【例 3】一個盒子裏有400枚棋子,其中黑色和白色的棋子各200枚.下麵我們對這些棋子做如下操作:每次拿出2枚棋子,如果顏色相同,就補1枚黑色棋子回去;如果顏色不同,就補1枚白色的棋子回去.這樣的操作,實際上就是每次都少了1枚棋子,那麼,經過399次操作後,最後剩下的棋子是顏色(填“黑”或者“白”).【考點】構造與論證【難度】3星【題型】填空【解析】在每一次操作中,若拿出的兩枚棋子同色,則補黑子1枚,所以拿出的白子可能為0枚或2枚;若拿出的兩枚棋子異色,則補白子1枚,“兩枚棋子異色”說明其中一黑一白,那麼此時拿出的白子數為0枚.可見每次操作中拿出的白子都是偶數枚,而由於起初白子有200枚,是偶數枚,所以每次操作後剩下的白子都是偶數枚,因此最後1枚不可能是白子,只能是黑子.【答案】黑子【例 4】在黑板上寫上1、2、3、4、……、2008,按下列規定進行“操怍”:每次擦去其中的任意兩個數a和b,然後寫上它們的差(大數減小數),直到黑板上剩下一個數為止.問黑板上剩下的數是奇數還是偶數?為什麼?【考點】構造與論證【難度】3星【題型】解答【解析】根據等差數列求和公式,可知開始時黑板上所有數的和為++++=⨯是一個偶數,而每一次“操作”,將a、b兩個數123200820091004變成了()-,它們的和減少了2b,即減少了一個偶數.那麼從整體上看,a b總和減少了一個偶數,其奇偶性不變,還是一個偶數.所以每次操作後黑板上剩下的數的和都是偶數,那麼最後黑板上剩下一個數時,這個數是個偶數.【答案】偶數【例 5】在1997×1997的正方形棋盤上的每格都裝有一盞燈和一個按鈕.按鈕每按一次,與它同一行和同一列方格中的燈泡都改變一次狀態,即由亮變為不亮,或由不亮變為亮.如果原來每盞燈都是不亮的,請說明最少需要按多少次按鈕才可以使燈全部變亮?【考點】構造與論證【難度】4星【題型】解答【解析】最少要1997次,將第一列中的每一格都按一次,則除第一列外,每格的燈都只改變一次狀態,由不亮變成亮.而第一列每格的燈都改變1997次狀態,由不亮變亮.如果少於1997次,則至少有一列和至少有一行沒有被按過,位於這一列和這一行相交處的燈保持原狀,即不亮的狀態.【答案】1997次【例 6】有3堆小石子,每次允許進行如下操作:從每堆中取走同樣數目的小石子,或是將其中的某一石子數是偶數的堆中的一半石子移入另外的一堆.開始時,第一堆有1989塊石子,第二堆有989塊石子,第三堆有89塊石子.問能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考點】構造與論證【難度】4星【題型】解答【解析】(1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因為操作就兩種,每堆取走同樣數目的小石子,將有偶數堆石子堆中一半移至另一堆,所以每次操作石子總數要麼減少3的倍數,要麼不變.現在共有1989+989+89=3067,不是3的倍數,所以不能將3堆中所有石子都取走.【答案】(1)可以(2)不能【例 7】在某市舉行的一次乒乓球邀請賽上,有3名專業選手與3名業餘選手參加.比賽採用單迴圈方式進行,就是說每兩名選手都要比賽一場.為公平起見,用以下方法記分:開賽前每位選手各有10分作為底分,每賽一場,勝者加分,負者扣分,每勝專業選手一場加2分,每勝業餘選手一場加1分;專業選手每負一場扣2分,業餘選手每負一場扣1分.問:一位業餘選手最少要勝幾場,才能確保他的得分比某位專業選手高? 【考點】構造與論證【難度】4星【題型】解答【解析】當一位業餘選手勝2場時,如果只勝了另兩位業餘選手,那麼他得10+2-3=9(分).此時,如果專業選手間的比賽均為一勝一負,而專業選手與業餘選手比賽全勝,那麼每位專業選手的得分都是10+2-2+3=13(分).所以,一位業餘選手勝2場,不能確保他的得分比某位專業選手高.當一位業餘選手勝3場時,得分最少時是勝兩位業餘選手,勝一位專業選手,得10+2+2-2=12(分).此時,三位專業選手最多共得30+0+4=34(分),其中專業選手之間的三場比賽共得0分,專業選手與業餘選手的比賽最多共得4分.由三個人得34分,34÷3=111,推知,3必有人得分不超過11分.也就是說,一位業餘選手勝3場,能確保他的得分比某位專業選高.【答案】勝3場【例 8】n支足球隊進行比賽,比賽採用單迴圈制,即每對均與其他各隊比賽一場.現規定勝一場得2分,平一場得1分,負一場得0分.如果每一隊至少勝一場,並且所有各隊的積分都不相同,問:(1)n=4是否可能?(2)n=5是否可能?【考點】構造與論證【難度】3星【題型】解答【解析】(1)我們知道4個隊共進行了24C場比賽,而每場比賽有2分產生,所以4個隊的得分總和為2C×2=12.因為每一隊至少勝一場,所以得分最低的4隊至少得2分,又要求每個隊的得分都不相同,所以4個隊得分最少2+3+4+5=14>12,不滿足.即n=4不可能。
组合专题:超难组合数学㈡
1.在参观团的任意四个人中,有一个人认识其他三个人。
证明:在任何四个团员中,总可以找到一个人,他认识所有的团员。
2.某个团体有n个成员(n≥5),并且有n+1个三人委员会,其中没有两个委员会有完全相同的成员。
证明:有两个委员会恰好有一个成员相同。
3.有一个十人的会,在他们当中任何三人至少有两人互不相识。
证明在这会中有四人,他们没一人认识四人中的其他人。
4.大厅中聚会了100个客人,他们中每个都与其余客人中至少67人相识。
证明:这些客人中一定可以找到4个客人,他们中任何两人都彼此相识。
测试题
四个人的聚会,每人各带了2件礼品,分赠给其余三个人中的二人,请你证明,至少有两对人,每对人是互赠过礼品的。
答案与解析
【分析】将四个人看为4个点ABCD
如果某个人赠送另一个礼品,则在这两个点之间了连一条边
(如果互增礼品,则在这两点之间连两条边)
每个人赠送两件礼品
故总边数为4×2=8
若四个人两两之间至多连一条边,至多连(4×3)÷2=6
又因为两个点之间至多连两条边
所以必定又两组点之间连8-6=2条边
所以命题成立。
1. 掌握最佳安排和选择方案的组合问题.2. 利用基本染色去解决相关图论问题.知识点说明 各种探讨给定要求能否实现,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.设计最佳安排和选择方案的组合问题,这里的最佳通常指某个量达到最大或最小.解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证.论证中的常用手段包括抽屉原则、整除性分析和不等式估计.组合证明题,在论证中,有时需进行分类讨论,有时则需要着眼于极端情况,或从整体把握。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题。
若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.板块一、最佳安排和选择方案 【例 1】 5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?【考点】构造与论证 【难度】2星 【题型】解答【解析】 因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.知识点拨知识点拨教学目标构造与论证所以,共需调换4+3+2+1=10次.【答案】10次【例2】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【考点】构造与论证【难度】3星【题型】解答【解析】从整体进行考虑.所得的2009个和相加,便等于1~2009的所有数的总和的2倍,是个偶数.2009个数的和是偶数,说明这2009个数中必有偶数,那么这2009个数的乘积是偶数.本题也可以考虑其中的奇数.由于1~2009中有1005个奇数,那么正反两面共有2010个奇数,而只有2009张卡片,根据抽屉原理,其中必有2个奇数在同一张卡片上,那么这张卡片上的数字的和是偶数,从而所有2009个和的乘积也是偶数.【答案】偶数【例3】一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚.下面我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填“黑”或者“白”).【考点】构造与论证【难度】3星【题型】填空【解析】在每一次操作中,若拿出的两枚棋子同色,则补黑子1枚,所以拿出的白子可能为0枚或2枚;若拿出的两枚棋子异色,则补白子1枚,“两枚棋子异色”说明其中一黑一白,那么此时拿出的白子数为0枚.可见每次操作中拿出的白子都是偶数枚,而由于起初白子有200枚,是偶数枚,所以每次操作后剩下的白子都是偶数枚,因此最后1枚不可能是白子,只能是黑子.【答案】黑子【例4】在黑板上写上1、2、3、4、……、2008,按下列规定进行“操怍”:每次擦去其中的任意两个数a和b,然后写上它们的差(大数减小数),直到黑板上剩下一个数为止.问黑板上剩下的数是奇数还是偶数?为什么?【考点】构造与论证【难度】3星【题型】解答【解析】根据等差数列求和公式,可知开始时黑板上所有数的和为123200820091004++++=⨯是一个偶数,而每一次“操作”,将a、b两个数变成了()a b-,它们的和减少了2b,即减少了一个偶数.那么从整体上看,总和减少了一个偶数,其奇偶性不变,还是一个偶数.所以每次操作后黑板上剩下的数的和都是偶数,那么最后黑板上剩下一个数时,这个数是个偶数.【答案】偶数【例5】在1997×1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【考点】构造与论证【难度】4星【题型】解答【解析】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮.而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.【答案】1997次【例6】有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光? (2)3堆中的所有石子都被取走?【考点】构造与论证 【难度】4星 【题型】解答【解析】 (1)可以,如(1989,989,89) →(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.【答案】(1)可以 (2)不能【例 7】 在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场.为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分.问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【考点】构造与论证 【难度】4星 【题型】解答【解析】 当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分).所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分).此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34÷3=1113,推知,必有人得分不超过11分.也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高.【答案】胜3场【例 8】 n 支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场.现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1)n =4是否可能?(2)n =5是否可能?【考点】构造与论证 【难度】3星 【题型】解答【解析】 (1)我们知道4个队共进行了24C 场比赛,而每场比赛有2分产生,所以4个队的得分总和为24C ×2=12.因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14>12,不满足.即n =4不可能。
【内容概述】组合证明题,在论证中,有时需进行分类讨论,有时则要着眼于极端情形,或从整体把握.若干点及连接它们的一些线段组成图,与此相关的题目称为图论问题,这里宜从特殊的点或线着手进行分析.各种以染色为内容,或通过染色求解的组合问题,基本的染色方式有相间染色与条形染色.【例题】1.某学校的学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书都至少被一个同学都读过.问:能否找到两个学生甲、乙和三本书A,B,C,使得甲读过A,B,没读过C,乙读过B,C,没读过A?说明判断过程.[分析与解]首先从读书数最多的学生中找一人甲.由题设,甲至少有一本书C未读过.设B是甲读过的书中一本,由题意知,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书.甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C 未读过A.因此可以找到满足要求的两个学生.2.甲、乙、丙三个班人数相同,在班级之间举行象棋比赛.各班同学都按l,2,3,4,…依次编号.当两个班比赛时,具有相同编号的同学在同一台对垒.在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙班比赛时,有9台是男、女生对垒.试说明在甲、丙班比赛时,男、女生对垒的台数不会超过24.并指出在什么情况下,正好是24?[分析与解]不妨设甲、乙比赛时,1~15号是男女对垒,乙、丙对赛时,在1~15号中有a台男女对垒,15号之后有(9-a)台男女对垒(0≤a≤9)甲、丙比赛时,前15号,男女对垒的台数时15-a(如果1号乙与1号丙是男女对垒,那么1号甲与1号丙就不是男女对垒),15号之后,有(9-a)台男女对垒.所以甲、丙比赛是,男女对垒的台数为(15-a)+(9-a)=24-2a≤24.仅在a=0,即必须乙、丙比赛时男、女对垒的号码,与甲、乙比赛时男、女对垒的号码完全不同,甲、丙比赛时,男、女对垒的台数才等于24.3.将5×9的长方形分成10个边长为整数的长方形.证明:无论怎样分法,分得的长方形中必有两个是完全相同的.[分析与解]10个边长为整数的长方形,其面积显然也均是正整数.划分出的长方形按面积从小到大为:1×1,1×2,1×3,1×4,2×2,1×5,1×6,2×3,1×7,1×8,2×4,1×9,3×3,2×5,2×6,3×4,2×7,3×5,2×8,4×4,2×9,3×6,……从这些长方形中选出10个不同的长方形,其面积和最小为:1×1+1×2+1×3+1×4+2×2+1×5+1×6+2×3+1×7+1×8=46,而原长方形的面积为5×9=45<46,所以分出的长方形必定有某两个是完全一样的.在8×8的棋盘上至少要取出多少个边长为整数的正方形,才能保证使取出的正方形中有两类图形的个数不小于2?4.将15×15的正方形方格表的每个格涂上红色、蓝色或绿色.证明:至少可以找到两行,这两行中某一种颜色的格数相同.[分析与解]如果找不到两行的某种颜色数一样,那么就是说所有颜色的列与列之间的数目不同.那么红色最少也会占:0+1+2+…+14=105个格子.同样蓝色和绿色也是,这样就必须有至少:3×(0+1+2+…+14)=315个格子.但是,现在只有15×15=225个格子,所以和条件违背,假设不成立,结论得证.能否在8×8的棋盘上每个空格内分别填入一个数字,1,2或3,使每行每列及两条对角线上的各个数字之和互不相同?请说明理由;5.有9位数学家,每人至多能讲3种语言,每3个人中至少有2个人有共通的语言.求证:在这些数学家中至少有3人能用同一种语言交谈.[分析与解]假设任意三位科学家都没有共同会的语言,这表明每种语言至多有两人会说.记这九位科学家为A、B、C、D、E、F、G、H、I.由于一位科学家最多会三种语言,而每种语言至多有两人会说,所以一位科学家至多能和另外三人通话,即至少与五人语言不通.不妨设A不能与B,C,D,E,F 通话.同理,B也至多能和三人通话,因此在C,D,E,F中至少有一人与B语言不通,设为C.则A、B、C三人中任意两人都没有共同语言,与题意矛盾.这表明假设不成立.6.4个人聚会,每人各带了2件礼品,分赠给其余3个人中的2人.试证明:至少有2对人,每对人是互赠过礼品的.[分析与解]将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线.由于每人送出2件礼物,图中共有(4×2=)8条线,由于每人礼品都分增给2个人,所以每两点之间至多有(1+1=)2条线.四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线.即为所证结论.有5个人站成一周,每人手里有一只玩具手枪和3发子弹,每个人都可以向圆周上的其他三人各开一枪,试证明:至少有5对人是相互开过枪的。
在现实生活中,我们经常需要自己设计一些方案来解决问题,设计方案的过程就是构造.但仅仅构造出一种方案是不行的,我们还要对方案的可行性进行分析,严格的讨论方案的正确与否,有的时候还需考虑方案是否最优,这个过程就是论证.构造与论证经常是合在一起的,没有构造出方案,也就无从论证,但仅仅构造出方案也是不行的,我们还需要证明方案是正确的.很多时候,构造论证问题都和最值问题结合在一起,这时我们就需要找到最优解.分析 要破坏一个三角形,只需去掉三角形的一条边就可以了,但要求我们去掉的线段最少,那么我们就应该更多地去掉多个三角形的公共边,那么去掉多少个边才行呢?练习1. 如图33×的表格中,最少去掉多少条线段,才能使图中没有正方形?很多问题中,不仅需要构造出方案,还需要讨论方案是否正确,有的时候还需要论证方案是否存在.下面我们来看这样的一道问题.分析 (1)对于1~15的数来说,能凑成平方数的情况并不多.我们可以从这里入手分析.同学们尝试一下看能不能得到一种合适的方案.线段.请问:这5(2)注意到除了2以外,质数只能是奇数,那我们是不是能从奇偶性的分析入手呢?练习2.能否将1至12重新排列,使得任意相邻两数的和都是质数?如果能请写出一组,如果不能请说明理由.构造论证的问题中,经常会用到很多其他的知识,例如数论的分析、抽屉原理、奇偶性分析等.分析 我们从第一页开始考虑.如果第二篇故事是奇数页开头的,那么第一篇故事一定是偶数页的,如果第三篇故事是奇数页开头的,那么前两篇的和一定是偶数页的,而故事最多有几篇是奇数页开头的,就需要考虑前面几篇的和,最多有多少个是偶数.练习3. 一个数列有7项,每相邻两项作差,发现所得的6个差里面有3个是1,3个是2.问:这个数列中最多有几个奇数,最少有几个奇数?构造与论证中有一类操作问题,需要我们对已有的对象进行操作和变化,以期得到需要的结果,在解决这类问题的时候,一定要考虑问题是否可行,不要上来就开始操作.而在分析问题的可行性时,不变量经常是解决问题的关键.页各不相同.如果从书的第一页开始印,那么故事从奇数页起头的最多有几篇?最少有几篇?分析 首先,同学们可以尝试着变化一下,看看能不能得到想要的结果,但在变化的过程中,能发现三个数有什么是没有变化的吗?怎么能说明是否能得到8、8、8呢?练习4. 黑板上写着9、18、27这三个数,老师现在请一些同学上黑板对这两个数进行操作,进行一次操作是指把两个数都进行如下变化:或者减2,或者加1.请问:能否经过若干次操作后得到11、12、13?能否经过若干次操作后得到8、8、8?下面我们来看一下构造与论证中常用的方法——染色法.我们举个例子来说明:在一个55×的方格表(图1)中放入25枚棋子,每格1枚;接着将所有棋子都移动到相邻方格中,且仍然每格1枚,能否办到?答案是不能.如果用一般的方法来说明将会变得非常复杂,但如果我们将方格阵按照如图2的方式染色,那么将所有棋子都放入到相邻的位置中,一定是黑格的棋子进白格,白格的棋子进黑格,但是共有13个黑格,只有12个白格,黑格的棋子不可能全部转移,所以我们的要求是达不到的.通过例子,同学们对于染色法有了初步的了解.但在实际的问题中,我们要根据题目的要求采用不同的染色方式,同学们一定要在做题的过程中积累不同的染色方法,这样才能做到有备无患.黑板对这三个数进行操作,进行一次操作是指把三个数都进行如下变化:者减若干次操作后得到 21分析 碰到这样的问题,我们首先要考虑的是能不能填出,而不是一上来就去试,这时就需要我们进行染色分析了.同学们可以先尝试一下黑白相间染色,论述一下是否成立?如果成立,那就需要找到一种合适的拼法.练习5. (1)能否用12个如图1所示的“T 型”拼成一个68×的长方形?(2)能否用12个如图2所示的“L 型”拼成一个68×的长方形?(3)能否用8个如图1所示的“T 型”和4个如图2所示的“L 型”拼成一个68×的长方形?棋盘?拼成一个图212本讲知识点汇总一、构造合理的方案.二、奇偶性的分析方法.三、操作中的不变性.四、经典的染色问题.作业1.如图,平面上有9个点,他们之间连着16条线段,从而围出了8个三角形.请问:至少要去掉多少条线段,才能使得其中没有以这9个点为顶点的三角形?2.能否将1~15排成一行,使得任意相邻两数之差都为质数?3.(1)能否将1 ~ 7这7个数放在一条直线上,使得任意三个相邻数的和都不大于12?(2)能否将1 ~ 7这7个数放在一个圆圈上,使得任意三个相邻数的和都不大于12?4.黑板上写着两个数9、99,现在老师请一些同学上黑板对这两个数进行操作是指把两个数都进行如下变化:或者减1,或者加3.请问:能否经过若干次操作后得到11、22?能否经过若干次操作后得到1、11?能否经过若干次操作后得到2、22?5.(1)能否用若干个图2的“L型”不重叠地拼出图1?(2)能否用若干个图3的“L型”不重叠地拼出图1?第1题1 2 3第5题。
小学奥数创新体系6年级
(上册授课详解)
最 新 讲 义
小学奥数
第二十四讲 构造论证二
例1. 答案:(1)如下图,(2)不能
详解:(1)略;(2)配成的平方数只有4、9、16三种可能,11只能和5配对,而4也只能和5配对,所以没有满足要求的填法.
例2. 答案:(1)9、7、2、14、11、5、4、12、13、3、6、10、15、1、8;
(2)1、2、3、14、5、12、7、10、9、8、11、6、13、4、15 详解:(2)奇数与奇数不能相邻,所以需要有7个偶数把它们分开.
例3. 答案:(1)能,(2)不能
详解:(1)可以按如下操作:(34,55,82)→(0,21,48)→(24,21,24)→(4,1,4)→(2,3,4)→(0,1,2)→(1,1,1)→(0,0,0);(2)本题中三堆石子数目和要是3的倍数,190不是3的倍数,所以,不能.
例4. 答案:(1)能;
(2)不能 详解:(1)可以按如下操作:(8,18,28)→(0,10,20)→(6,7,17)→(8,9,16)→(7,8,15)→(6,7,14)→(6,7,8);(2)所有操作不能改变三个数的两两之差被3除的余数大小.
例5. 答案:(1)如图,白框涂红、黑框涂蓝;(2)不能
详解:(2)1×2的小长方形每次恰覆盖1个红格和1个蓝格,而由(1)可知红格与蓝格的数目不相等.
例6. 答案:能,能
1 2 3 4 5 6 7 8 9
8 2 6 5 4 3 9 1 7
1
2
3
4
5
6
7
8
9
10 11
详解:方法同上.。
小学六年级奥数天天练:构造与论证教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有_89块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:
(1)某2堆石子全部取光?
(2)3堆中的所有石子都被取走?
【答案】
(1)可以,如(_89,989,89) (__,9_,0) (950,9_,950)
(50,0,50) (25,25,50) (O,0,25).
(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.
现在共有_89+989+89=3_7,不是3的倍数,所以不能将3堆中所有石子都取走.
小学六年级奥数天天练:构造与论证.到电脑,方便收藏和打印:。
用构造法求数列的通项公式的分类和求解方法分类,求解方法重庆市綦江县东溪中学任德辉求数列的通项公式是近几年高考重点考察的内容,两类特殊数列等差数列和等比数列可以根据公式直接求解,还有些特殊数列可用累加法、累乘法等来直接求解,但有些数列却不能直接求解,它们往往要转化为等差、等比数列和其他数列后再运用各自的通项公式求解,从而体现化归思想在数列中的运用,此时可用构造法求解。
所谓构造法就是在解决某些数学问题中通过对条件和结论的充分剖析,有时会联想出一些适当的辅助模型,以促成命题的转换,产生新的解题方法。
下面就构造法求数列的通项公式的分类和解题方法分别进行论述。
一、用构造法求数列的通项公式依照构造目标数列的不同可以分为构造等差数列、构造等比数列和构造其他数列。
1.构造等差数列例1、(2022湖北)已知数列{an}的前n项和Snan()12n12(n为正整数),令bn2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式。
解:a11,b121a1122n1∵Snan()12,∴Sn1an1()n22nn1n∴2an1an()等式两边都乘以2得2an12an1,12n即bn1bn1,∴数列{bn}是以1为首项公差为1的等差数列,bn2an=n∴annn2n例2、数列an中,若a12,an1an,则a4()13anA.21683B.C.D.191554分类,求解方法解:an1an13an11,313anan1anan又1111,是首项为公差3的等差数列。
a12an21156n52(n1)33n,anan2226n5a422所以选A645192.构造等比数列例3、(2022上海)已知数列{an}的前n项和为Sn,且Snn5an85,nN 证明:{an1}是等比数列并求{an}的通项公式证明:当n1时,a1S115a185,a114,a1115当n2时,Sn1n15an185,∴anSnSn115an5an16an5an11,an15(an11)65的等比数列。
第十四讲构造与论证构造与论证是一类创造性的思维活动要求我们积极展开联想灵活运用所学的知识。
而构造法是一种重要的数学方法,一类数论问题可以通过构造出某些特殊结构,特殊形式的数列或数组来解决,另外在解决一些图形问题上,逻辑推理问题上也可以通过构造我们所熟悉的特殊情景然后在解题,问题就变得容易多定能从中选出3支笔,使得任意2支笔在颜色和规格上各不相同?分析:显然不能.例如盒子里只有规格和颜色分别为短红、短黄、短绿、中红、长红的5支铅笔.例3、(★★)一个立方体的12条棱分别被染成白色和红色,每个面上至少要有一条边是白色的,那么最少有多少条边是白色的?分析:注意到有如下带有“○”的三条边满足(注意三条线没有任何两条在同一个平面内),并且显然有只染2条边无法满足,所以至少需要3条白色的边.例4、(★★)国际象棋的皇后可以沿横线、竖线、斜线走,为了控制一个4×4的棋盘至少要放几个皇后?分析:显然在2×2的棋盘中,只需要一个皇后即可控制,3×3的棋盘中,只需在中心格内放入一个皇后即可控制;而4×4的棋盘中,我们只需将其分成一个3×3的棋盘,即一个“L”形如下图:4×3的棋盘就必被352吃掉,123被123吃掉(任何数都可以被与它相同的数吃掉),但240和223互相都不能被吃掉.现请你设计6个三位数,它们当中任何一个都不能被其他5个数吃掉,并且它们的百位数字只允许取l,2;十位数字只允许取1,2,3;个位数字只允许取1,2,3,4.问这6个三位数分别是多少?分析:我们注意先书写高位数字较小的数字,再往下书写,有:114,123,132,213,222,231为所求的6个三位数.例6、(★★)在如图所示表格第二行的每个空格内,填入一个整数,使它恰好表示它上面的那个数字在第二行中出现的次数,那么第二行中的5个数字各是几?分析:每一空格填一个数,共有5个空格,各个数出现的次数总和应该等于5,即第二行所填的五数之和是5.如果4的下面一格所填数超过1,其他空格中至少有两个4,五个数的和就会超过5;如果4的下面填1,表示4在第二行出现一次.这时,其余数的和为0.所以,4只能填在0的下面,但第二行仅剩三个空格(五个空格中已填了一个1和一个4),矛盾,所以4的下面一格只能填0.再看3的下面一格,若填大于1的数,则第二行至少有两个3,超过了5,不满足;若填1,则表示3在第二行出现一次.如果把3填在0的下面,1的下面至少填1,还剩两格,无法填上三个0;如果3填在其他数字下面,定会出现第二行五数之和大于5.所以,3的下面也只能填0.现在,第二行所剩三个空格中,只能填0,1,2三个数字,且要它们的和为5,只有一个1和两个2满足要求.所以,1在第二行出现一次,1的下面一格应填1;2在第二行出现两次,2的下面一格应填2;0在第二行中出现两次,在0的下面一格填上2.便得到结果:21200.例7、(★★★)有一张8×8的方格纸,每个方格都涂上红、蓝两色之一.能个红格次翻分析:因为共翻动了1993+1992+1991+…+3+2+1=1994×1993÷2=997×1993,也就是每枚硬币平均翻动997次,恰好使得原来朝上的一面变为朝下.又有1993=1+1992=2+1991=…=996+997.所以,第k次与第(1995-k)次恰好翻动这1993枚硬币各一次,则最终每枚硬币均被翻动997次,原先朝下的一面都朝上.例9、(★★★)在象棋比赛中,胜者得1分;败者扣1分;若为平局,则双方各得0分.今有若干名学生进行比赛,每两人之间都赛一局.现知,其中有一个学生共得7分,另一个学生共得20分.试说明,在比赛过程中至少有过一次平局.分析:假设总人数为n+1,如果没有平局,设得7分得那个学生胜过x个人,输给了n-x个人,所以得到x-(n-x)=2x-n分,由此得2x-n=7,这说明n 为奇数.设得20分得学生胜过y个人,输给了n-y个人,所以得到y-(n-y)=2y -n分,由此得2y-n=20,这说明n为偶数.两者矛盾,所以开始得假设不成立,即至少有过依次平局成立.例10、(★★★)今有长度为l,2,3,…,198,199的金属杆各一根,能否用上全部的金属杆,不弯曲其中的任何一根,把它们焊接成(1)一个正方体框架?(2)一个长方体框架?[分析与解] (1) 正方体不可能,因为正方体的12条棱长度相同,所以所有数的和应该是12的倍数.但1+2+3+…+198+199=19900,不是12的倍数.(2) 长方体可能,因为长方体的棱长和只要求是4的倍数即可,19900显然是4的倍数.下面给出一种构造方法:有199=1+198=2+197=3+196=4+195=…=99+100.这样我们将199个金属杆变成100个长度为199的杆,这样让长、宽、高分别为199×12,199×12,199即可,需(12+12+1)×4=100根,正好满足.例11、(★★★)5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第l卷.如果每次只能调换相邻的两卷,那么最少要调换多少次?分析:因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第1卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第1卷的位置最少需2次,得到的顺序为54312;最后将第1卷和第2卷对调即可.所以,共需调换4+3+2+1=10次.例12、(★★★)有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子全部取光?(2)3堆中的所有石子都被取走?分析:(1) 可以,如(1989,989,89)→(1900,900,0)→(950,900,950)→(50,0,50)→(25,25,50)→(0,0,25) .(2) 因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.例13、(★★★) (1)5条直线最多有几个交点?(2)5个三角形最多能将平面分成几部分?(3)5个长方形最多能将平面分成几部分?分析:(1)2条直线最多有1个交点,第三条直线和前面的两条直线各有1个交点,共1+2=3个交点;第四条直线和前面的三条直线各有1个交点,共3+3=6个交点;第五条直线和前面的四条直线各有1个交点,共6+4=10个交点。