中考复习之有关圆的计算及正多边形和圆24
- 格式:doc
- 大小:139.50 KB
- 文档页数:4
中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。
正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。
二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。
四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。
五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。
七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。
八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。
中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31 .解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=131312222++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.【答案】321::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q 分别表示阴影部分的面积,那么P和Q的大小关系是( ).A.P=Q B.P>Q C.P<Q D.无法确定(2)如图(b),△ABC为等腰直角三角形,AC=3,以BC为直径的半圆与斜边AB交于点D,则图中阴影部分的面积是________.(3)如图(c),△AOB中,OA=3cm,OB=1cm,将△AOB绕点O逆时针旋转90°到△A′OB′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D. 3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA , ∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】解:连接OC 、OD 、CD . ∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD .4.如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E .(1)求弧BE 所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB)对应的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.(1)求线段PC的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048= 3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,∴S△OCD=12DC•OD=12×23×2=23,则S阴影=S扇形OCE-S△OCD=8-233π.【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。
一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。
2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。
4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。
2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。
正多边形和圆及圆的有关计算一、知识梳理: 1、正多边形和圆各边相等,各角也相等的多边形叫正多边形. 定理:把圆分成n(n >3)等分:(l)依次连结各分点所得的多边形是这个圆的内按正多边形;(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形。
定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正多边形的外接(或内切)圆的圆心叫正多边形的中心。
外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。
正n 边形的每个中心角等于n360正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心. 若n 为偶数,则正n 边形又是中心对称图形,它的中心就是对称中心.边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。
2、正多边形的有关计算正n 边形的每个内角都等于nn180)2(-定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。
正多边形的有关计算都归结为解直角三角形的计算. 3、画正多边形(1)用量角器等分圆 (2)用尺规等分圆 正三、正六、正八、正四及其倍数(正多边形). 正五边形的近似作法(等分圆心角) 4、圆周长、弧长(1)圆周长C =2πR ;(2)弧长180Rn L π=5、圆扇形,弓形的面积 (l )圆面积:2R S π=;(2)扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
在半径为R 的圆中,圆心角为n °的扇形面积S 扇形的计算公式为:3602R n S π=扇形注意:因为扇形的弧长180R n L π=。
所以扇形的面积公式又可写为LR S 21=扇形(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。
弓形面积可以在计算扇形面积和三角形面积的基础上求得.如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。
中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。
我们以正n边形来进行讨论,其中n表示边的个数。
二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。
2.外角和:正n边形的外角和为360°。
3.内角和:正n边形的内角和为(2n-4)×90°。
4.中心角和:正n边形的中心角和为360°。
5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。
三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。
四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。
圆心角的大小等于其对应的圆弧的度数。
2.弧长:圆心角对应的圆弧的长度称为弧长。
如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。
3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。
4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。
即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。
单位为弧度。
6.周长和面积:圆的周长等于2πR,面积等于πR²。
五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。
2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。
3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。
以上就是《正多边形与圆》的一些重要知识点的归纳。
在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。
加油!。
初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的关系是初中数学中重要的内容。
在中考复习中,我们需要掌握正多边形与圆的有关知识,并能够进行证明和计算。
一、正多边形的性质与计算:1.正多边形的定义:正多边形是指所有边相等,所有角也相等的多边形。
2.正多边形的计算:正n边形的内角和为180°(n-2),每个内角为(180°(n-2))/n。
正n边形的外角和为360°,每个外角为360°/n。
正n边形的中心角为360°/n。
例题1:求正六边形的内角和。
解:内角和为180°(6-2)=720°。
例题2:求正五边形的每个内角大小。
解:每个内角为(180°(5-2))/5=108°。
二、正多边形与圆的关系:1.圆的定义:圆是平面上一组到一个固定点(圆心)距离相等的点的集合。
2.正多边形与圆的关系:正多边形的顶点均在圆上,且正多边形的外接圆和内切圆都满足以下性质:①外接圆:正多边形的外接圆的圆心与正多边形的中心重合。
②内切圆:正多边形的内切圆的圆心与正多边形的中心重合,且内接圆的半径等于正多边形的边长的一半。
3.正多边形与圆的证明:①外接圆的证明:由正多边形的定义可知,正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。
而圆心与正多边形的中心重合,所以正多边形的外接圆的圆心与正多边形的中心重合。
②内切圆的证明:首先,通过正多边形的定义,可以证明正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。
其次,由于正多边形的边长相等,所以正多边形的中心到各个顶点的距离也相等。
而内切圆的半径等于正多边形中心到任意一个顶点的距离,所以正多边形的内切圆的圆心与正多边形的中心重合,且内切圆的半径等于正多边形的边长的一半。
例题3:如图,正六边形ABCD中,O为外接圆的圆心,求AB的长。
解:由于正六边形的外接圆的圆心与正多边形的中心重合,所以O即为正六边形的中心。
与圆有关的计算弧长: 扇形面积阴影部分面积 圆锥侧面积: 180r n l π=R l R n S 弧扇213602==π白整阴S S S -=母侧l S r π=计算 对称性 定义正多边形与圆 周长、面积、中心角、半径 画法:等分圆 正多形都是轴对称图形 正n 边形有n 条对称轴,都经过中心 若n 是偶数,则正n 边形还是中心对称图形备 课 笔 记备课时间:20 年 月 日课题 第24课时:正多边形与圆、与圆有关的计算课型 复习课课时1教学 目标 1.知道正多边形、正多边形的中心等概念,掌握正多边形的对称性;2.会用尺规作圆的内接正方形和正六边形,知道用正多边形进行平面图形的镶嵌;3.会计算圆的周长、扇形的弧长及简单组合图形的周长;4.会计算圆的面积、扇形的面积及简单组合图形的面积;5.知道圆锥当中的量与侧面展开图-扇形当中的量的对应关系,以及利用其解决相关问题.教学 重点 计算扇形的弧长、面积以及圆锥中的有关计算.教学 难点 利用圆锥当中的量与侧面展开图-扇形当中的量的对应关系解决问题.教学 准备导学案、多媒体课件教 学 内 容三次备课教 学 过 程一次备课 活动一、知识梳理活动二、基础检测1.(1)给出下列说法:①正多边形的各条边相等;②各边相等的多边形是正多边形;③各角相等的多边形是正多边形;④各边相等的圆的内接多边形是正多边形;⑤既是轴对称又是中心对称的多边形是正多边形.其中正确说法的个数是 ( ) A .1 B .2 C .3 D .4布置学生复习教材:九上第二章P77-P95 学生活动:组内讨论,回顾知识点,完善知识体系. 教师活动:课堂上多媒体展示知识点,组织小组讨论,完善知识体系,建构知识框架.教学过程一次备课(2)张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是( )A B C D(3)正多边形的一个外角为15°,则边数为;正n边形的一个内角是156°,则n=;正n边形的一个外角与一个内角的比为1:3,则n=.2.(1)在半径为1的⊙O中,120°的圆心角所对的弧长是,面积是.(2)如果一个扇形的半径是1,弧长是3,那么此扇形的圆心角的大小为.(3) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.3.(1)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于.(2)用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是.活动三、综合检测4.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.5.如图,有一个⊙O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和⊙O相切(我们称T1,T2分别为⊙O的内接正六边形和外切正六边形).设T1,T2的边长分别为a,b,正六边形T1,T2的面积分别为S1,S2,则S1:S2=.6.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8学生活动:独立思考,自主完成.教师活动:请学生结合性质和判定,分析问题并解决问题,对暴露出来的问题及时提醒.学生活动:1、独自练习;2、小组交流.教师活动:1、指导学生在分析问题中总结注意点;2、对学生进行友情提醒;3、对难点问题加强指导、纠错.第6题第4题第5题第7题教学过程一次备课8.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若半圆O的半径为12,求阴影部分的周长与面积.活动四、拓展提升9.如图,在△ABC中,AB=5,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π10. 如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.11. 一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了2017次,则B点所经过的路径长度为.学生活动:独立思考、自主探索、学生展示.教师活动:适时点拨、评价.第9题第10题第11题。
有关圆的计算及正多边形和圆
知识考点:
1、掌握正多边形的边长、半径、中心角、边心距、周长、面积等的计算;
2、掌握圆周长、弧长的计算公式,能灵活运用它们来计算组合图形的周长;
3、掌握圆、扇形、弓形的面积计算方法,会通过割补、等积变换求组合图形的面积;
4、掌握圆柱、圆锥的侧面展开图的有关计算。
精典例题:
【例1】如图,两相交圆的公共弦AB 为32,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比。
分析:欲求两圆的面积之比,根据圆的面积计算公式,只须求出两圆的半径3R 与6R 的平方比即可。
【例2】已知扇形的圆心角为1500
,弧长为π20,求扇形的面积。
分析:此题欲求扇形的面积,想到利用扇形的面积公式,lR R n S 2
1360
2
=
π=
扇形,不管是用前者还是
用后者都必须求出扇形的半径。
【例3】如图,已知PA 、PB 切⊙O 于A 、B 两点,PO =4cm ,∠APB =600
,求阴影部分的周长。
2
O
1O ∙∙
例1图
B
A
例3图
【例4】如图,已知直角扇形AOB ,半径OA =2cm ,以OB 为直径在扇形内作半圆M ,过M 引MP ∥AO
交⋂
AB 于P ,求⋂
AB 与半圆弧及MP 围成的阴影部分面积阴S 。
分析:要求的阴影部分的面积显然是不规则图形的面积,不可能直接用公式,只有用“割补法”,连结OP 。
POA PMO BMQ AOB S S S S S 扇扇扇阴---∆=
探索与创新:
【问题】如图,在R t A B C △中,9042C A C B C ===∠°,,, 分别以A C .B C 为直径画半圆,则图
中阴影部分的面积为 .(结果保留π)
跟踪训练:
一、选择题:
1、正六边形的两条平行边之间的距离为1,则它的边长为( )
A 、
6
3 B 、
4
3 C 、
3
32 D 、3
3
2、如图,两同心圆间的圆环的面积为π16,过小圆上任一点P 作大圆的弦AB ,则PB PA ⋅ 的值是( ) A 、16 B 、π16 C 、4 D 、π4
3、如图,AB 为半圆O 的直径,C 为半圆上一点,且⋂
AC 为半圆的3
1,设扇形AOC 、△COB 、弓形B m C 的
面积分别为1S 、2S 、3S ,则下列结论正确的是( )
A 、1S <2S <3S
B 、2S <1S <3S
C 、2S <3S <1S
D 、3S <2S <1S
例4图
O
M
B
A
C
A
B
问题图 ∙
第2题图
O
P
B
A
3
S 2
S 1
S m 第3题图
O
C
B
A
4、如图,A 是半径为1的⊙O 外一点,OA =2,AB 切⊙O 于B ,弦BC ∥OA ,连结AC ,则图中阴影部分的面积为( ) A 、π9
2
B 、π6
1
C 、8
36
1+
π D 、8
34
1-
π
第5题图
第6题图
C
O
B
A
5、如图,在△ABC 中,∠BAC =300
,AC =a 2,BC =b ,以直线AB 为轴旋转一周得到一个几何体,则这个几何体的表面积是( ) A 、2
2a π B 、ab π C 、ab a ππ+2
3 D 、)2(b a a +π
二、填空题:
1、扇形的圆心角为1500,扇形的面积为π240cm 2
,则扇形的弧长为 。
2、一个圆锥形零件底面圆半径r 为 4 cm ,母线l 长为12 cm ,则这个零件的展开图的圆心角α的度数是 。
3、如图,正△ABC 的中心O 恰好为扇形ODE 的圆心,要使扇形ODE 绕O 无论怎样旋转,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的
3
1,则扇形的圆心角应为。
第3题图
第4题图
A
第5题图
4、如图,A 、B 、C 、D 是圆周上的四个点,⋂
⋂
⋂
⋂+=+BD AC CD AB ,且弦AB =8,CD =4,则图中两个弓形(阴影)面积的和是 (结果保留三个有效数字)。
5、如图,国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,每个圆环的内、外圆直径分别为8和10,图中两两相交成的小曲边四边形(阴影部分)的面积相等,已知五个圆环覆盖的面积是122.5平方单位,请你计算出每个小曲边四边形的面积为 平方单位(π取3.14)
6、已知扇形的半径为2cm ,面积是2
4
3cm π,则扇形的弧长是 cm ,扇形的圆心角为 °.
三、计算或证明题:
1、如图,⊙O 内切于△ABC ,切点分别为D 、E 、F ,若∠C =900
,AD =4,BD =6,求图中阴影部分的面积。
第1题图
F A
B
C
2、如图,在Rt △ABC 中,∠C =900
,O 点在AB 上,半圆O 切AC 于D ,切BC 于E ,AO =15cm ,BO =20cm ,
求⋂
DE 的长。
3、如图,有一个直径是1米圆形铁皮,要从中剪出一个最大的圆心角为900
的扇形ABC ,求: (1)被剪掉(阴影)部分的面积;
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?
∙
第2题图
E A B O
C
D
第3题图 C。