专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破
- 格式:doc
- 大小:892.00 KB
- 文档页数:14
思路探寻2考点透视= OA ∙ AB + CA2= OA ∙()AO + OB + CA 2= CA 2- OA 2+ OA ∙ OB = CA 2- OA 2= CA 2-1,当CA =2时, OC ∙ AB + CA ∙CB 取得最大值为3.首先根据三角形和外接圆的特点选择 OA 、OB 作为基底,并结合已知条件求出基底 OA 、OB 的数量积;然后用基底 OA 、 OB 表示出 OC 、 AB 、 CA 、CB,并根据向量的数量积公式求解.图3图4例3.如图4,在等腰直角△ABC 中,AC =2,点M 为线段AB 上的动点(包含端点),点D 为AC 的中点,将AC 绕点D 旋转到EF ,则 ME ∙MF 的最小值为_____.解:连接MD ,则 ME ∙ MF =() MD + DE ∙()MD + ED =||MD 2-|| DE 2,当MD ⊥AB 时,MD 最小,即||MDmin=,由|| DE 2=1,可得 ME ∙ MF 最小值为-12.解答本题,需以 MD 、DE 为基底,并用基底表示出平面向量 ME 、MF ,将问题转化为求|| MD min.再结合图形的特点,确定|| MD 取最小值时的情形,即可解题.三、利用投影法运用投影法求解平面向量数量积问题,需根据平面向量数量积的几何意义,构造出相应的几何图形,通过研究几何图形中的垂直、平行等关系,确定向量投影之间的关系,从而求得平面向量的数量积.运用投影法解题,需熟练掌握并运用向量数量积的几何意义、模长公式、余弦函数的性质.例4.若在菱形ABCD 中,AC =4,则 CA ∙AB =______.解:如图5所示,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,∴2AO =AC =4,且AC ⊥BO ,∴||AB cos ∠CAB =AO =2,∴CA ∙ AB =-|| AC ∙|| AB cos ∠CAB =-8.根据题意画出图形,通过观察图形,可以确定AB在CA 方向上的投影即为|| A O ,于是连接BD ,根据菱形的性质:对角线互相垂直,构造出直角三角形,即可通过解直角三角形求出投影||A O 的长度,从而利用射影法求得 CA ∙AB 数量积的大小.图5图6例5.在△ABC 中,∠ABC =π3,点O 是△ABC 的外心, BA ∙ BO =2, BC ∙ BO =4,则 BA ∙ BC =______.解:如图6所示,设AB ,BC 中点分别为D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥BC ,由 BA ∙BO =2,可得|| BA ∙|| BO cos ∠OBD =12||BA ∙|| BA =2,故||BA =2,由 BC ∙BO =4,可得|| BC ∙|| BO cos ∠OBE =12|| BC ∙|| BC =4,故||BC =22,所以 BA ∙ BC =|| BA ∙||BC cos ∠ABC =22.要求 BA 、 BC 的数量积,需求出向量 BA 、BC 的模长,于是根据 BO 及其在 BA 、BC 上的投影关系,分别求得|| BA 、||BC 的大小,就能根据射影法顺利求出目标向量数量积的大小.相比较而言,坐标法比较常用,且解题过程较为简单;射影法比较灵活,但通常很难想到.无论运用哪种方法,都需熟练掌握并运用平面向量的数量积公式及其几何意义、向量运算法则及其几何意义,根据已知条件和解题需求,选用合适的方法进行求解.(作者单位:江苏省泗洪姜堰高级中学)50。
考点32平面向量的数量积(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解平面向量数量积的含义及其几何意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题【知识点】1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则 =θ(0≤θ≤π)叫做向量a 与b 的夹角.2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量 叫做向量a 与b 的数量积,记作.3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,AB → =a ,CD → =b ,过AB → 的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→ ,我们称上述变换为向量a 向向量b ,A 1B 1—→叫做向量a 在向量b 上的.记为.4.向量数量积的运算律(1)a ·b =.(2)(λa )·b = =.(3)(a +b )·c =.5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a±b )2=a 2±2a ·b +b 2.2.有关向量夹角的两个结论(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0.(2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π.【核心题型】题型一 平面向量数量积的基本运算计算平面向量数量积的主要方法(1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用基底法求数量积.(4)灵活运用平面向量数量积的几何意义【例题1】(2024·陕西西安·模拟预测)已知平行四边形ABCD 中,4,3,60,(0),9AB AD BAD DP DC AP BP l l ==Ð=°=>×=uuu r uuu r uuu r uuu r,则l 的值为( )A .45B .34C .23D .12【变式1】(2024·浙江金华·三模)已知4a =r ,3b =r ,a b a b +=-r r r r ,则()a ab ×-=rr r ( )A .16-B .16C .9-D .9【变式2】(2024·陕西西安·模拟预测)已知向量,a b rr 的夹角为60°,若(4)8,||1a b b a -×=-=r r r r ,则||b =r.【变式3】(2024·辽宁丹东·一模)记ABC V 内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V面积为S ,且222a b c +-=.(1)求C ;(2)若a =6BA BC ×=uuu r uuu r,求S .题型二 平面向量数量积的应用(1)求平面向量的模的方法①公式法:利用|a |(a ±b )2=|a |2±2a ·b +|b |2;②几何法:利用向量的几何意义.(2)求平面向量的夹角的方法①定义法:cos θ=a ·b |a ||b |;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0)命题点1 向量的模【例题2】(2024·江苏扬州·模拟预测)已知向量a r ,b r 满足1a =ra r 与b r的夹角为5π6,则2a b -=r r ( )A .12BC .1D .13【变式1】(2024·河北·三模)已知非零向量a r ,b r 的夹角为π3,12a æö=ç÷ç÷èør ,1a b -=r r ,则a b +=r r( )A .1BCD【变式2】(2024·河南·三模)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,60C =°,7c =,若3,a b D -=为AB 中点,则CD =.【变式3】(2023·福建福州·模拟预测)在ABC V 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C p==.(1)求B ;(2)若ABC VBC 边上中线的长.命题点2 向量的夹角【例题3】(2024·北京·三模)若||1,||2,()a b a b a ==-^r r r r r,则向量a r 与b r 的夹角为( )A .30°B .60°C .120°D .150°【变式1】(2024·江苏南通·三模)已知三个单位向量,,a b c r r r 满足=+r r ra b c ,则向量,b c r r 的夹角为( )A .6pB .3pC .23pD .56p 【变式2】(2024·江西·模拟预测)已知平面内非零向量a r在向量b r 上的投影向量为12b -r ,且3a b =r r ,则a r 与b r夹角的余弦值为 .【变式3】(2024·江西·模拟预测)如图,在正三棱柱111ABC A B C -中,P 是棱11A B 的中点,Q是棱AC 上一点,且AQ AC =122AB BB ==.(1)求证:1BP B C ^;(2)求平面1PQB 与平面1BPB 的夹角的余弦值.命题点3 向量的垂直【例题4】(2024·江苏连云港·模拟预测)若向量m r,n r 满足1m =r ,2n =r ,且()m n m -^r r r ,则m n -=r r( )A .1BCD .2【变式1】(2024·重庆·模拟预测)已知||1,||2a b ==r r ,且a r 与b r 不共线,若向量k +r r a b 与-rr a kb 互相垂直,则实数k 的值为( )A .12-B .12C .12±D .2±【变式2】(2024·宁夏银川·三模)已知a r 是单位向量,且a r 与a b +r r 垂直,a r 与b r的夹角为135°,则a b +rr 在b r 上的投影数量为 .【变式3】(2023高三·全国·专题练习)四面体ABCD 中,2222AB CD AD BC +=+,求证:AC BD ^.题型三 平面向量的实际应用 用向量方法解决实际问题的步骤【例题5】(2024·广东梅州·二模)如图,两根绳子把物体M 吊在水平杆子AB 上.已知物体M 的重力大小为20牛,且150AOM Ð=°,在下列角度中,当角q 取哪个值时,绳OB 承受的拉力最小.( )A .45°B .60°C .90°D .120°【变式1】(2020·宁夏中卫·二模)加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N ,则该学生的体重(单位:kg )约为( )(参考数据:取重力加速度大小为210/ 1.732g m s »=)A .63B .69C .75D .81【变式2】(2024·全国·模拟预测)如图,某物体作用于同一点O 的三个力123F F F ,,使物体处于平衡状态,已知11N F =,22N F =,1F 与2F 的夹角为120°,则3F 的大小为 .(牛顿N 是物理的力学单位)【变式3】(2022·内蒙古赤峰·三模)如图所示,把一个物体放在倾斜角为30o 的斜面上,物体处于平衡状态,且受到三个力的作用,即重力G u r,垂直斜面向上的弹力1F uu r ,沿着斜面向上的摩擦力2F uu r .已知:13N,160N F G ==u u r u r ,则2F uu r 的大小为.【课后强化】【基础保分练】一、单选题1.(2024·山西太原·模拟预测)已知单位向量a r ,b r 满足()12a b a -×=r r r ,则2a b -r r 与b r 的夹角为( )A .π6B .π3C .2π3D .5π62.(2024·四川眉山·三模)已知向量,,a b c r r r 0a b c ++=r r r ,则cos ,a c b c --=r r r r( )A .1314B C .D .1314-3.(2024·安徽合肥·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b =,cos cos cos B A Cb ac +=+,2AM MC =uuuu r uuu u r ,则BM uuuu r 可能是( )A .12B .23C .1D .24.(2024·重庆·模拟预测)如图,圆O 内接边长为1的正方形,ABCD P 是弧BC (包括端点)上一点,则AP AB ×uuu r uuu r的取值范围是( )A .éêëB .éêëC .éêëD .ùúû二、多选题5.(2024·江西宜春·模拟预测)已知向量(1,2)a =-r,(6,2)b =-r ,则( )A .(2)a b a +^r r rB .||a b -=r rC .a r 与b r 的夹角为π4D .a r 在b r 上的投影向量为14b -r6.(2024·浙江温州·模拟预测)已知单位向量,,a b c r rr 共面,则下列说法中正确的是( )A .若a b a b +=-r r r r ,则//a b r rB .若a b a b +=-r r r r ,则a b ^r rC .若0a b c ++=r r r r ,则π,3a c =r r D .若0a b c ++=r r r r ,则π3,2b c =r r 三、填空题7.(2024·辽宁丹东·二模)设向量a r ,b r 的夹角为60o,且1a =r ,2b =r ,则()2a b b +×=r r r.8.(2021·云南昆明·三模)两同学合提一捆书,提起后书保持静止,如图所示,则1F 与2F 大小之比为.9.(2024·重庆·模拟预测)已知非零向量a r 、b r 满足()2,a b a b b =+^r r r r r ,则向量a r 与b r的夹角为 .四、解答题10.(23-24高三下·山东菏泽·阶段练习)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,向量(),sin sin b A C m =+r,()sin sin ,v A B a c =+-r 且v m ^r r .(1)求角C 的大小;(2)若ABC V 3cos cos 4A B =,求c .11.(2024·江苏南通·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,2c BA BC =×-uuu r uuu r,其中S 为ABC V 的面积.(1)求角A 的大小;(2)设D 是边BC 的中点,若AB AD ^,求AD 的长.【综合提升练】一、单选题1.(2024·宁夏固原·一模)已知向量(1,1),(0,)a b t =-=r r,若()2a a b ^+r r r ,则b =r ( )A B .1C D .22.(2024·福建泉州·模拟预测)已知||2a =r ,b =r ,|2|2a b -=r r,则向量a r 与b r 的夹角为( )A .π6B .π3C .2π3D .5π63.(2024·吉林长春·模拟预测)已知两个向量,a b rr 满足1a b b ×==r r r ,a -r ,则a =r ( )A .1B C D .24.(2024·浙江绍兴·二模)已知1e u r ,2e u u r 是单位向量,且它们的夹角是60°,若122a e e =+r u r u u r,12b e e l =-r u r u u r ,且a b ^r r,则l =( )A .25B .45C .1D .25.(2024·河北衡水·模拟预测)在ABC V 中,60,6,3,2,BAC AB AC AM MB CN NM Ð=====o uuu r uuu r uuuu r uuu r uuu r uuuu r ,则AN CB ×=uuu r uuu r( )A .9-B .172C .9D .186.(2024·河南·模拟预测)已知向量,a b 满足2a b a b ==×=r rr r ,又非零向量c 满足c a c b×=×rr r r ,则b r 与c r 的夹角为( )A .π6B .π3C .π3或2π3D .π6或5π67.(2024·湖北黄冈·二模)已知e r为单位向量,向量a r 满足3,1a e e a l ×=-=r r r r ,则a r 的最大值为( )A .9B .3C D .108.(2024·云南曲靖·二模)已知O 是ABC V 的外心,2AB AC AO +=uuu r uuu r uuu r ,OA AB =uuu r uuu r ,则向量AC uuu r在向量BC uuu r上的投影向量为()A .14BC-uuur B .r C .34BCuuur D BC r 二、多选题9.(2024·全国·模拟预测)已知向量()()1,1,2,,,a b k a b c a tb =-=^=-r r r r r r r.若,,a c b c =r r r r ,则( )A .12a b=r r B .4b c ×=r rC .b r 在c r 方向上的投影向量为cr D .与b r反向的单位向量是10.(23-24高三下·山东菏泽·开学考试)已知单位向量a r ,b r的夹角为q ,则下列结论正确的有( )A .()()a b a b +^-r rr r B .a r 在b r 方向上的投影向量为()a b b×r r r C .若||1a b +=rr ,则60q =oD .若()()a b a a b a +×=-×r r r r r r,则//a br r 11.(2024·贵州黔东南·二模)拋物线2:2(0)C y px p =->的焦点F 到准线的距离为1,经过点(),0P m 的直线l 与C 交于,A B 两点,则( )A .当1m =时,直线l 斜率的取值范围是æççèB .当点P 与点F 重合时,112FA FB+=C .当2m =-时,FA uuu r 与FB uuu r的夹角必为钝角D .当2m =-时,AOB Ð为定值(O 为坐标原点)三、填空题12.(2024·辽宁沈阳·三模)已知向量,a b rr 满足2=r a ,()44a b b +×=r r r ,则2a b +=r r.13.(2020·河北张家口·二模)如图,某班体重为70kg 的体育老师在做引体向上示范动作,两只胳膊的夹角为60°,拉力大小均为F ,若使身体能向上移动,则拉力F 的最小整数值为 N .(取重力加速度大小为2g 10m /s =1.732»)14.(2024·吉林长春·模拟预测)在ABC V 中,已知π,3A BC ==当边BC的中线AD =时,ABC V 的面积为 .四、解答题15.(2024·贵州·模拟预测)在ABC V中,AB =2AC =,π6C Ð=,N 为AB 的中点,A Ð的角平分线AM 交CN 于点O .(1)求CN 的长;(2)求AOC V 的面积.16.(22-23高三上·河南安阳·阶段练习)已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x q q æö=+=ç÷èør r (1)若),4(3c =-r 且 ()π,0,π4x q =Î时,a r 与c r 的夹角为钝角,求cos q 的取值范围;(2)若π3q =函数()f x a b =×r r ,求()f x 的最小值.17.(2024·全国·模拟预测)在ABC V 中,内角,,A B C 所对的边分别为,,,cos cos a b a b c c B A-=-.(1)试判断ABC V 的形状,并说明理由;(2)若a ,点P 在ABC V 内,0PA PC ×=uuu r uuu r ,3tan 4PCB Ð=,求tan APB Ð.18.(2024·福建宁德·三模)在ABC V 中,角,,A B C 的对边分别为,,a b c .已知2292cos a c ac B +=+,且sin sin B A C =.(1)若BD AC ^,垂足为D ,求BD 的长;(2)若3BA BC ×=u uuu r uu r ,求a c +的长.19.(2024·湖北·二模)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,()c a b <,2cos cos cos 2c a A B b A =-.(1)求A ;(2)者13BD BC =uuu r uuu r ,2AD =uuu r ,求b c +的取值范围.【拓展冲刺练】一、单选题1.(2024·江苏·模拟预测)已知向量a r ,b r 满足1a =r ,b =r ()218b a b ×-=-r r r ,则a r 与b r 的夹角等于( )A .30°B .60°C .120°D .150°2.(2024·浙江·三模)已知单位向量,a b r r 满足0a b ×=r r ,则cos 34,a b a b ++=r r r r ( )A .0BCD .13.(2024·陕西·模拟预测)已知两个向量(2,1),)a b m =-=r r ,且()()a b a b +^-r r r r ,则m 的值为( )A .1±B .C .2±D .±4.(2023高三·全国·专题练习)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF Ð=,则||PO =( )A .25B C .35D 二、多选题5.(2024·贵州·模拟预测)已知(3,1)a =-r ,(2,1)b =r ,则下列结论正确的是( )A .()a b b -^r r rB .2a b +=r rC .a r 与b r 的夹角为4pD .a r 在b r 6.(2022·湖北·模拟预测)已知向量()21a =-r ,,()1,b t =-r ,则下列说法正确的是( )A .若a b ^r r ,则t 的值为2-B .若//a b r r ,则t 的值为12C .若02t <<,则a r 与b r 的夹角为锐角D .若()()a b a b +^-r r r r ,则a b a b +=-r r r r 三、填空题7.(2024·四川绵阳·模拟预测)已知非零向量,a b r r 满足2a b =r r ,且()a ab ^-r r r ,则a b r r ,的夹角大小为 .8.(2024·安徽合肥·三模)在ABC V 中,若3BA BC CA CB AC AB ×=×=×uuu r uuu r uuu r uuu r uuu r uuu r ,则||||AB BC =uuu r uuu r .9.(2023·上海闵行·二模)平面上有一组互不相等的单位向量1OA ,2OA ,…,n OA ,若存在单位向量OP uuu r 满足12OP OA OP OA ×+×uuu r uuur uuu r uuuu r 0n OP OA ++×=L uuu r uuuu r ,则称OP uuu r 是向量组1OA ,2OA ,…,n OA 的平衡向量.已知12π,3OA OA =uuur uuuu r ,向量OP uuu r 是向量组1OA uuur ,2OA uuuu r ,3OA uuu u r 的平衡向量,当3OP OA ×uuu r uuu u r 取得最大值时,13OA OA ×uuur uuu u r 值为 .四、解答题10.(2024·山东枣庄·一模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且sin tan 22a C A c =.(1)求C ;(2)若8,5,a b CH ==是边AB 上的高,且CH mCA nCB =+uuu r uur uuu r ,求m n.11.(2023·河北衡水·模拟预测)已知ABC V ,D 为边AC 上一点,1AD =,2CD =.(1)若34BA BD ×=uuu r uuu r ,0BC BD ×=uuu r uuu r ,求ABC S V ;(2)若直线BD 平分ABC Ð,求ABD △与CBD △内切圆半径之比的取值范围.。
一.方法综述平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析.本专题举例说明解答解决平面向量数量积问题的方法、技巧.二.解题策略类型一 投影定义法【例1】【2018届河南省中原名校高三上第一次考评】已知P 是边长为2的正△ABC 边BC 上的动点, 则·(+)=_________.【指点迷津】1、数量积与投影的关系(数量积的几何定义):向量,a b 数量积公式为cos a b a b θ⋅=,可变形为()cos a b a b θ⋅=⋅或()cos a b b a θ⋅=⋅,进而与向量投影找到联系(1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→⋅=⋅(记a b λ→为a 在b 上的投影)(2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解:a b a b bλ→⋅=即数量积除以被投影向量的模长2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)(2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是M 中绕圆心M 运动的一条直径,则PD PE ⋅=_________MCAO BPD EQ类型二 基底法【例2】【2018届浙江省金华十校4月模拟】已知平面内任意不共线三点,,,则的值为( )A. 正数B. 负数C. 0D. 以上说法都有可能 【指点迷津】1.遇到几何图形中计算某两个向量,a b 数量积的问题,如果无法寻找到计算数量积的要素(,a b 模长,夹角),那么可考虑用合适的两个向量(称为基底)将,a b 两个向量表示出来,进而进行运算.这也是在几何图形中处理向量数量积的一个重要方法.2.如何选择“合适”的基底:题目中是否有两个向量模长已知,数量积可求呢?如果有,那就是它们了.所以在此类题目中首先可先确定那些向量的数量积与模长已知.常见的可以边所成向量作基底的图形有:等边三角形,已知两边的直角三角形,矩形,特殊角的菱形等. 【举一反三】如图,在ABC 中,120,2,1,BAC AB AC D ∠===是边BC 上一点,2DC BD =,则AD BC ⋅=_______________类型三 坐标法【例3】【2018届江苏省苏锡常镇四市高三调研(二)】如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.【指点迷津】常见的可考虑建系的图形:(1)具备对称性质的图形:长方形,正方形,等边三角形,圆形 (2)带有直角的图形:直角梯形,直角三角形 (3)具备特殊角度的图形(30,45,60,120等) 【举一反三】如图,平行四边形ABCD 的两条对角线相交于M ,点P 是MD 的中点,若2AB =,1AD =,且60BAD ∠=,则AP CP ⋅=_________三.强化训练1.【2018届河北省武邑中学一模】是圆上两个动点,,,为线段的中点,则值为( )A. B. C. D. 2.【2018届湖南省永州市三模】在中,,,,是上一点,且,则等于( )A. 1B. 2C. 3D. 43.【2018·宝鸡质检】在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→·BN ―→的取值范围为( )A.⎣⎡⎦⎤32,2B.⎝⎛⎭⎫32,2 C.⎣⎡⎭⎫32,2D.⎣⎡⎭⎫32,+∞ 4.【2018届山东省潍坊市二模】在等腰ABC ∆中, AB AC =, 6BC =,点D 为边BC 的中心,则•AB BD =__________.5.【2018届滨海新区七所重点学校联考】在平行四边形ABCD 中, 2AB =, 1AD =, 60BAD ∠=︒,E 为CD 的中点,若F 是线段BC 上一动点,则AF FE ⋅的取值范围是________6.【2018届广东省佛山市高三检测(二)】直角中,为中点,在斜边上,若,则__________.7.【2018届黑龙江省齐齐哈尔市二模】已知平行四边形中,,,点 是中点,,则_________.8.【2018届浙江省嘉兴市高三4月模拟】已知,向量满足.当的夹角最大时,________.9.【2018届河南省南阳市第一中学高三第十四次考】若非零向量,满足,则在方向上的投影为__________.10.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO ―→·BC ―→=________.。
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
平面向量的数量积问题侧重于考查平面向量的数量积公式、向量的模的公式、数乘运算法则、加减法的几何意义、基本定理、共线定理的应用.解答这类问题常用的途径有利用坐标法、定义法、数形结合法.下面结合实例来进行介绍.一、利用坐标法坐标法是指通过建立平面直角坐标系,将问题转化为坐标运算问题来求解.运用坐标法解答平面向量数量积问题,需根据几何图形的特点,寻找或构造垂直关系,建立合适的平面直角坐标系,熟练掌握并灵活运用向量的坐标运算法,如a ∙b=()x 1,y 1∙()x 2,y 2=x 1x 2+y 1y 2、||a =x 12+y 12、a +b =()x 1+x 2,y 1+y 2、a -b=()x 1-x 2,y 1-y 2.例1.已知P 是半径为1,圆心角为23π的一段圆弧AB 上的一点,若 AC =2 CB ,则 PA ∙PC 的取值范围是_____.解:以O 为原点、OB 为x 轴,建立如图1所示的平面直角坐标系.图1可得O ()0,0,B ()1,0,A æèçø-12,过点C 作CD ⊥OB ,垂足为D ,∵|| OA =||OB =1,∠AOB =2π3,∴|| A B =3,∵ AC =2CB ,∴|| CB =13|| A B =,在Rt△CDB 中,∠CBD =π6,∴|| CD =12|| CB,|| DB =12,∴|| OB =12,∴C æèçø12,设P ()cos θ,sin θ,0≤θ≤2π3,∴ PC ∙ PA=æèçöø÷12-cos θ-sinθ∙æèçöø÷-12-cos θ-sin θ=cos 2θ-14+14-θ+sin 2θ=1-θ,∵0≤θ≤2π3,∴0≤sin θ≤1,∴1≤1θ≤1,∴ PA ∙PC 的取值范围是éëêùûú1-.首先根据圆弧的特点,以O 为原点建立平面直角坐标系;然后设出点P 的坐标,求得其他各点、各个向量的坐标,即可通过向量坐标运算,求得 PA ∙PC 的表达式;再根据三角函数的有界性求得问题的答案.二、采用定义法定义法是指根据平面向量数量积的定义:a ∙b=||a ∙||||b cos a ,b 解题.在解题时,要分别求得所求平面向量的模长、向量之间的夹角或其余弦值,即可根据平面向量数量积的定义求得答案.例2.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,求|c |的最大值.解:因为|a |=|b |=1,a ·b =0,则(a -c )·(b -c )=-c ·(a +b )+|c |2=-|c ||a +b |·cos θ+|c|2=0,其中θ为c 与a +b 的夹角,所以|c |=|a +b |cos θ=2cos θ≤2,47所以|c |的最大值是2.解答本题主要运用了定义法.我们先通过向量的数乘运算、加法运算、减法运算,根据已知关系式,将问题转化为求向量的模的平方以及向量的数量积;然后根据向量的数量积公式将问题转化为求c 与a +b 的夹角的余弦值以及|a +b |的乘积的最值,根据基本不等式求解,即可解题.例3.已知点P 是边长为1的正十二边形A 1A 2⋯A边上任意一点,则 AP ∙A 1A 2的最小值为().A.- B.- C.-3 D.-2解:如图2所示,延长A 10A 11、A 2A 1交于Q ,图2由题意可得A 10A 11⊥A 2A 1,过A 12分别作A 1Q 、A 11Q 的垂线,垂足分别为M 、N ,正十二边形A 1A 2⋯A 12的每个内角()12-2×180°12=150°,在Rt△A 12MA 1中,||A 1A 12,∠MA 1A 12=30°,则||A 1M =||A 1A 12cos 30°,在Rt△A 11NA 12中,||A 11A 12=1,∠NA 11A 12=30°,则||QM =||A 12N =||A 11A 12sin 30°=12,所以||A 1Q =||A 1M +||QM =,而 A 1P ∙ A 1A 2=|| A 1A 2∙|| A 1P cos θ,θ为 A 1P 、 A 1A 2的夹角,所以数量积 A 1P ∙ A 1A 2等于A 1P 在 A 1A 2方向上的投影||A 1P cos θ的乘积,当点P 在线段A 10A 11上时, A 1P ∙A 1A 2取最小值,可得 A 1P ∙ A 1A 2=|| A 1P ∙||A 1A 2cosθ=||A 1A 2()-|| A 1Q=.解答本题,首先要根据正十二边形的特征和向量数量积的几何意义找出 A 1P ∙A 1A 2取得最小值的情形:点P 在线段A 10A 11上;然后根据平面向量数量积的定义,求得向量 A 1P 、A 1A 2的模长及其夹角的大小,即可求得最小值.三、数形结合数形结合法是解答函数问题、向量问题的重要方法.在解题时,需先将向量的模看作线段的长,根据三角形法则、平行四边形法则构造几何图形,添加辅助线;然后将两个向量的夹角看作三角形、平行四边形的内角,利用三角形的性质、平行四边形的性质、圆的性质解题.例4.如图3,AB是圆O 的一条直径,且||AB =4,点C 、D 是圆O 上任意两点,点P 在线段CD 上,则PA ∙PB 的取值范围为______.图3图4解:如图4所示,连接OP ,则 PA ∙ PB =() PO + OA ∙()PO + OB = PO 2+ PO ∙()OA + OB + OA ∙ OB =|| PO 2-4,而P 在线段CD 上,且||CD =2,则圆心到直线CD 的距离d =22-12=3,所以3≤|| PO 2≤4,可得-1≤|| PO 2-4≤0,故 PA ∙PB 的取值范围为[]-1,0.解答本题,要先根据三角形法则和向量运算,将求 PA ∙PB 转化为求|| PO 2的最值;然后根据弦心距、圆的半径、弦之间的关系建立关系式,求得圆心到直线CD 的距离,该值即为|| PO 的最小值,||PO 的最大值为圆的半径,这样便确定了求|| PO 2的最值,从而求得问题的答案.上述三种方法都是解答平面向量数量积问题的重要方法.其中坐标法、定义法较为简单,数形结合法具有较强的灵活性,需根据题意构造出合适的几何图形,并将问题与平面几何、解析几何知识关联起来.(作者单位:云南省会泽县大成高级中学)48。
第3节 平面向量的数量积及其应用最新考纲 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.知 识 梳 理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos_θ.规定:零向量与任一向量的数量积为0,即0·a =0. (3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos_θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律).(3)(a +b )·c =a ·c +b ·c (分配律). [常用结论与微点提醒]1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去同一个向量.诊 断 自 测1.思考辨析(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.答案 (1)× (2)√ (3)√ (4)×2.(2018·云南11校跨区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34解析 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34,选D. 答案 D3.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.解析 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 74.(必修4P104例1改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.解析 由数量积的定义知,b 在a 方向上的投影为 |b |cos θ=4×cos 120°=-2. 答案 -25.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2 =12,解之得λ=33.答案 33考点一 平面向量的数量积及在平面几何中的应用【例1】 (1)(2018·河南天一联考测试)如图,在△ABC 中,AB =3,AC =5,∠BAC =60°,D ,E 分别是AB ,AC 的中点,连接CD ,BE 交于点F ,连接AF ,取CF 的中点G ,连接BG ,则AF →·BG →=________.(2)(2018·莆田三月检测)在直角梯形ABCD 中,∠A =90°,AD ∥BC ,BC =2AD ,△ABD 的面积为1,若DE →=12EC →,BE ⊥CD ,则DA →·DC →=________. 解析 (1)依题意,F 是△ABC 的重心, AF →=23×12(AB →+AC →)=13(AB →+AC →), BG →=12(BF →+BC →)=12⎝ ⎛⎭⎪⎫13BA →+43BC →=12⎝ ⎛⎭⎪⎫43AC →-53AB →=23AC →-56AB →, 故AF →·BG →=13(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-56AB →=9536.(2)如图,以B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴建立平面直角坐标系,设|AD |=a (a >0),则|BC |=2a ,又S △ABD =1, ∴|AB |=2a ,∴A ⎝ ⎛⎭⎪⎫0,2a ,B (0,0),C (2a ,0),D ⎝ ⎛⎭⎪⎫a ,2a .设E (x ,y ),则DE →=⎝ ⎛⎭⎪⎫x -a ,y -2a ,EC →=(2a -x ,-y ),∵DE →=12EC →,∴⎝ ⎛⎭⎪⎫x -a ,y -2a =12(2a -x ,-y )=⎝ ⎛⎭⎪⎫a -x 2,-y 2,则⎩⎪⎨⎪⎧x -a =a -x 2,y -2a =-y 2,即⎩⎪⎨⎪⎧x =43a ,y =43a ,∴E ⎝ ⎛⎭⎪⎫43a ,43a ,∴BE →=⎝ ⎛⎭⎪⎫43a ,43a ,CD →=⎝ ⎛⎭⎪⎫-a ,2a ,∵BE ⊥CD ,∴BE →·CD →=0,∴43a ·(-a )+43a ·2a=0,解得a 2=2,∴DA →·DC →=(-a ,0)·⎝ ⎛⎭⎪⎫a ,-2a =-a 2=- 2. 答案 (1)9536 (2)- 2规律方法 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【训练1】 (1)(2018·武汉三调)在平行四边形ABCD 中,点M ,N 分别在边BC ,CD 上,且满足BC =3MC ,DC =4NC ,若AB =4,AD =3,则AN →·MN →=( ) A.-7B.0C.7D.7(2)(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.解析 (1)以AB →,AD →为基底,AN →=AD →+34AB →,MN →=CN →-CM →=14CD →-13CB →=-14AB→+13AD →,AN →·MN →=⎝ ⎛⎭⎪⎫AD →+34AB →·⎝ ⎛⎭⎪⎫-14AB →+13AD →=13⎝ ⎛⎭⎪⎫AD →2-916AB →2=13(9-9)=0. (2)AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ3×3+2λ3×4-13×9-23×3=-4⇒λ=311.答案 (1)B (2)311考点二 平面向量的夹角与垂直【例2】 (1)(2017·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(2018·洛阳一模)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( ) A.-7B.-3C.2D.3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c , 即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.答案 (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3规律方法 1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. 【训练2】 (1)(2018·广东省际名校联考)已知向量a ,b 满足|a |=2|b |=2,且(a +3b )⊥(a -b ),则a ,b 夹角的余弦值为________.(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.解析 (1)∵|a |=2|b |=2,且(a +3b )⊥(a -b ), ∴(a +3b )·(a -b )=0,即a 2+2a ·b -3b 2=0, 故有a ·b =-12,则cos 〈a ,b 〉=-14.(2)由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2. 答案 (1)-14 (2)-2考点三 平面向量的模及其应用【例3】 (1)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)(2016·四川卷改编)已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.解析 (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3. (2)建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1.设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0,代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494. 答案 (1)23 (2)494规律方法 1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【训练3】 (1)(2018·湖北七市联合调考)平面向量a ,b ,c 不共线,且两两所成的角相等,若|a |=|b |=2,|c |=1,则|a +b +c |=________.(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.解析 (1)由|a +b +c |2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c =9+2×2×2cos 120°+2×2×1×cos 120°+2×2×1×cos 120°=9-4-2-2=1,则|a +b +c |=1. (2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ),|PA →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|PA →+3PB →|的最小值为5. 答案 (1)1 (2)5基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·全国Ⅱ卷)设非零向量a ,b 满足|a +b |=|a -b |,则( )A.a ⊥bB.|a |=|b |C.a ∥bD.|a |>|b |解析 由|a +b |=|a -b |平方得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0,则a ⊥b . 答案 A2.(2018·合肥质检)设向量a ,b 满足|a +b |=4,a ·b =1,则|a -b |=( ) A.2B.2 3C.3D.2 5解析 由|a +b |=4,a ·b =1可得,a 2+b 2=16-2=14,∴|a -b |2=a 2-2a ·b +b 2=14-2×1=12,∴|a -b |=2 3. 答案 B3.(2018·华中师大高考联盟质检)已知向量a =(2,1),b =(1,m ),c =(2,4),且(2a -5b )⊥c ,则实数m =( ) A.-310B.-110C.110D.310解析 因为2a -5b =2(2,1)-5(1,m )=(-1,2-5m ),又(2a -5b )⊥c ,所以(2a -5b )·c =0,则(-1,2-5m )·(2,4)=-2+4(2-5m )=0,解得m =310. 答案 D4.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD →在AB →方向上的投影是( ) A.322B.-322C.3 5D.-3 5解析 依题意得,AB →=(2,1),CD →=(5,5),AB →·CD →=(2,1)·(5,5)=15,|AB →|=5,因此向量CD →在AB →方向上的投影是AB →·CD →|AB →|=155=3 5.答案 C5.(2018·大连测试)若向量a ,b 的夹角为π3,且|a |=2,|b |=1,则a 与a +2b 的夹角为( ) A.π6B.π3C.2π3D.5π6解析 ∵向量a ,b 的夹角为π3,且|a |=2,|b |=1,∴a ·b =2×1×cos π3=1,|a +2b |=|a |2+4a ·b +4|b |2 =22+4×1+4×12=23,∴cos 〈a ,a +2b 〉=a ·(a +2b )|a ||a +2b |=a 2+2a ·b |a ||a +2b |=22+2×12×23=32,∵〈a ,a +2b 〉∈[0,π],∴〈a ,a +2b 〉=π6. 答案 A 二、填空题6.(2018·河南百校联盟联考)已知向量a =(2,1),b =(3,-1),则|a +b |(2a +b )·(a -b )=________.解析 ∵a =(2,1),b =(3,-1),∴a +b =(5,0),2a +b =(7,1),a -b =(-1,2),∴|a +b |=5,(2a +b )·(a -b )=-5,∴|a +b |(2a +b )·(a -b )=-1.答案 -17.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________. 解析 由已知得AB →=OB →-OA →=(3,1), AC →=OC →-OA →=(2-m ,1-m ).若AB →∥AC →,则有3(1-m )=2-m ,解得m =12. 由题设知,BA →=(-3,-1),BC →=(-1-m ,-m ). ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0,可得m >-34.由题意知,当m =12时,AB →∥AC →,且AB →与AC →同向. 故当∠ABC 为锐角时,实数m 的取值范围是 ⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞8.(2017·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.解析 设P (cos α,sin α),∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6,当且仅当cos α=1时取等号. 答案 6 三、解答题9.(2017·德州一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B , 则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.解 (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4.(2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2),故△ABC 的面积S =12ac sin B ≤3(2+1)2, 即△ABC 的面积的最大值为32+32.能力提升题组(建议用时:20分钟)11.(2018·江西新高考联盟质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,向量m =⎝ ⎛⎭⎪⎫a 2,c 2,n =(cos C ,cos A ),且m ·n =b cos B ,则B 的值是( ) A.π6 B.π3 C.π2 D.2π3解析 ∵m ·n =a 2cos C +c 2cos A ,且m ·n =b cos B . ∴a 2cos C +c 2cos A =b cos B ,即a cos C +c cos A =2b cos B .由正弦定理,得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B .∵0<B <π,sin B ≠0,∴cos B =12,∴B =π3.答案 B12.(2017·浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析 由题意,不妨设b =(2,0),a =(cos θ,sin θ),则a +b =(2+cos θ,sin θ),a -b =(cos θ-2,sin θ).令y =|a +b |+|a -b | =(2+cos θ)2+sin 2θ+(cos θ-2)2+sin 2θ =5+4cos θ+5-4cos θ,则y 2=10+225-16cos 2θ∈[16,20].由此可得(|a +b |+|a -b |)max =20=25,(|a +b |+|a -b |)min =16=4,即|a +b |+|a -b |的最小值是4,最大值是2 5.答案 4 2 513.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解 (1)由题设知AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8.当t =8时,n =24;当t =-8时,n =-8,∴OB →=(24,8)或OB →=(-8,-8).(2)由题设知AC →=(k sin θ-8,t ),∵AC →与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k (sin θ-4k )2+32k .∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8,此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32.。
(高考冲刺押题)2019高考数学三轮基础技能闯关夺分必备向量的数量积(含解析)【考点导读】1. 理解平面向量数量积的含义及几何意义.2. 掌握平面向量数量积的性质及运算律.3. 掌握平面向量数量积的坐标表达式.4. 能用平面向量数量积处理有关垂直、角度、长度的问题.【基础练习】1.,a b 均为单位向量,它们的夹角为060,那么3+=a b 132.在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,假设直角三角形ABC 中,2=+AB i j ,3=+AC i kj ,那么k 的可能值个数为2个3.点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,那么点O 是ABC ∆的垂心〔填重心、垂心、外心、内心〕。
4. 假设1=a ,2=b ,a 与b 的夹角为060,假设(3+5)⊥a b ()-ma b ,那么m 的值为2385. 假设||1,||2,===+a b c a b ,且⊥ca ,那么向量a 与b 的夹角为 120°6. 【范例导析】 例1、 两单位向量a 与b 的夹角为0120,假设2,3=-=-c a b d b a ,试求c 与d 的夹角的余弦值。
分析:利用22=a a 及cos θ⋅=⋅a b a b求解. 解:由题意,1==a b ,且a 与b 的夹角为0120,所以,1cos1202⋅=︒=-a b a b ,()()22222447=⋅=-⋅-=-⋅+=c c c a b a b a a b b ∴=c ,同理可得而⋅=c d 2217(2)(3)7322-⋅-=⋅--=-a b b a a b b a ,设θ为c 与d 的夹角,那么cosθ==点评:向量的模的求法和向量间的乘法计算可见一斑。
例2.平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, 〔1〕求证:()-a b ⊥c ;〔2〕假设||1++>ka b c )(R k ∈,求k 的取值范围.分析:问题〔1〕通过证明()0-⋅=a b c 证明()-⊥a b c ,问题〔2〕可以利用()22||++=++ka b c ka b c解:〔1〕∵ ||||||1===a b c ,且a 、b 、c 之间的夹角均为120°,∴ 00()||||cos120||||cos1200-⋅=⋅-⋅=-=a b c a c b c a c b c∴ ()0-⋅=a b c〔2〕∵ ||1++>ka b c ,即2||1++>ka b c也就是22222221+++⋅+⋅+⋅>k a b c ka b ka c b c∵ 12⋅=⋅=⋅=-a b b c a c ,∴022>-k k所以 0<k 或2>k 、解:对于有关向量的长度、夹角的求解以及垂直关系的判断通常是运用平面向量的数量积解决. 例3.如图,在直角△ABC 中,BC a =,假设长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值分析:此题涉及向量较多,可通过向量的加减法那么得()()BP CQ AP AB AQ AC ⋅=-⋅-,再结合直角三角形和各线段长度特征法解决问题解:,0.AB AC AB AC ⊥∴⋅=,,,()()AP AQ BP AP AB CQ AQ AC BP CQ AP AB AQ AC =-=-=-∴⋅=-⋅- 222222()1212cos .AP AQ AP AC AB AQ AB ACa AP AC AB APa AP AB AC a PQ BCa PQ BCa a θ=⋅-⋅-⋅+⋅=--⋅+⋅=--⋅-=--⋅=--⋅=--2cos 0,(),..2PQ BC BP CQ a πθθ==⋅-故当即与方向相同时最大其最大值为点拨:运用向量的方法解决几何问题,充分表达了向量的工具性,对于大量几何问题,不仅可以用例3向量语言加以表达,而且完全可以借助向量的方法予以证明和求解,从而把抽象的问题转化为具体的向量运算.例4.平面上有以O 为圆心,以1为半径的圆,圆上有三点A, B,C,向量,,OA OB OC 满足等式mOA nOB OC +=,这里,,0m n R mn ∈≠.(1) 假设,OA OB ⊥证明:221m n +=;(2) 假设1,m n ==-证明:ABC ∆为正三角形.分析:对于问题〔1〕,抓住所证结论的特征,可将题目所给表达式mOA nOB OC +=两边同平方证得, 对于问题〔2〕,由于是有关三角形形状的问题可以结合余弦定理解决.解:〔1〕由mOA nOB OC +=两边平方得22222cos m OA n OB OA OB mn AOB ⋅+⋅+∠= 2OC ,又2221OA OB OC ===,∵,OA OB ⊥∴90AOB ∠=,∴221m n +=(3) 由〔1〕知221cos 2m n AOB mn --∠=,而1,m n ==-∴1cos 2AOB ∠=-, ∴()22222cos AB OB OA OA OB OA OB AOB =-=+-∠=3,∴3AB =,同理可得,3BC CA ==即AB=BC=CA,∴ABC ∆为正三角形.点拨:要注意平面向量与三角、平几、解几等知识的综合运用,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。
高考数学技巧解决平面向量的数量积与向量积问题在高考数学中,平面向量是常见的考点之一,而数量积和向量积是平面向量的两个重要运算。
掌握解决平面向量的数量积与向量积问题的技巧,可以帮助我们更好地应对考试。
1. 数量积的计算技巧数量积,也被称为点积或内积,可以用来计算两个向量之间的夹角、判定向量是否垂直以及计算向量的模长等问题。
以下是一些解决数量积问题的技巧:1.1 向量坐标法当给定两个向量的坐标时,可以直接利用数量积的定义公式\( \vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y \)来计算数量积。
其中,\( \vec{a} = (a_x, a_y) \) 和 \( \vec{b} = (b_x,b_y) \) 分别表示两个向量的坐标。
1.2 向量解法在某些情况下,我们可以将两个向量表示为已知向量的线性组合。
例如,已知向量 \( \vec{a} = 2\vec{i} + 3\vec{j} \) 和 \( \vec{b} = 4\vec{i} - \vec{j} \),我们可以利用数量积的性质,将向量的线性组合展开并计算数量积:\( \vec{a} \cdot \vec{b} = (2\vec{i} + 3\vec{j}) \cdot (4\vec{i} - \vec{j}) = 8 + (-3) = 5 \)2. 向量积的计算技巧向量积,也被称为叉积或外积,可以用来计算两个向量之间的夹角、判定向量是否共线以及计算向量的面积等问题。
以下是一些解决向量积问题的技巧:2.1 行列式法对于平面向量 \( \vec{a} = a_x\vec{i} + a_y\vec{j} \) 和 \( \vec{b} =b_x\vec{i} + b_y\vec{j} \),利用向量积的定义公式\( \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} \\ a_x &a_y \\ b_x & b_y \end{vmatrix} = (a_xb_y - a_yb_x)\vec{k} \)可以通过行列式的运算求得向量积。
一.方法综述平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析.本专题举例说明解答解决平面向量数量积问题的方法、技巧.二.解题策略类型一投影定义法【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________.【答案】6【解析】设BC的中点为D,则AD⊥BC,【指点迷津】1、数量积与投影的关系(数量积的几何定义):向量,a b r r 数量积公式为cos a b a b θ⋅=r r r r,可变形为()cos a b a b θ⋅=⋅r r r r 或()cos a b b a θ⋅=⋅r r r r ,进而与向量投影找到联系(1)数量积的投影定义:向量,a b r r的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即aba b b λ→⋅=⋅r r r r r(记a b λ→r r 为a r 在b r 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解:aba b bλ→⋅=r r r r r即数量积除以被投影向量的模长2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)(2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==AO OC <,点P 为线段OA 的中点,若DE 是M e 中绕圆心M 运动的一条直径,则PD PE ⋅=u u u r u u u r_________MCAO BPD EQ【答案】-5【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD uuu r 在PE uuu r上的投影向量为PQ uuu r .所求PD PE PE PQ ⋅=-⋅u u u r u u u r,而由PE PQ ⋅联想到相交弦定理,从而PE PQ AP PC ⋅=⋅.考虑与已知条件联系求出直径AC 上的各段线段长度.由射影定理可得:28AO CO OB ⋅==,且6AO CO AC +==,所以解得2,4AO OC ==,再由P 为OA 的中点可得1,5AP PC ==,所以5PE PQ AP PC ⋅=⋅=,进而5PD PE PE PQ ⋅=-⋅=-u u u r u u u r答案:5- . 类型二 基底法【例2】【2018届浙江省金华十校4月模拟】已知平面内任意不共线三点,,,则的值为( )A. 正数B. 负数C. 0D. 以上说法都有可能 【答案】B【指点迷津】1.遇到几何图形中计算某两个向量,a b r r 数量积的问题,如果无法寻找到计算数量积的要素(,a b r r模长,夹角),那么可考虑用合适的两个向量(称为基底)将,a b r r两个向量表示出来,进而进行运算.这也是在几何图形中处理向量数量积的一个重要方法.2.如何选择“合适”的基底:题目中是否有两个向量模长已知,数量积可求呢?如果有,那就是它们了.所以在此类题目中首先可先确定那些向量的数量积与模长已知.常见的可以边所成向量作基底的图形有:等边三角形,已知两边的直角三角形,矩形,特殊角的菱形等. 【举一反三】如图,在ABC V 中,120,2,1,BAC AB AC D ∠===o是边BC 上一点,2DC BD =,则AD BC ⋅=u u u r u u u r_______________【答案】83-答案:83 AD BC⋅=-u u u r u u u r类型三坐标法【例3】【2018届江苏省苏锡常镇四市高三调研(二)】如图,扇形的圆心角为90°,半径为1,点是圆弧上的动点,作点关于弦的对称点,则的取值范围为____.【答案】.【解析】分析:先建立直角坐标系,再设出点P,Q的坐标,利用已知条件求出P,Q的坐标,再求出的函数表达式,求其最值,即得其取值范围.【指点迷津】常见的可考虑建系的图形:(1)具备对称性质的图形:长方形,正方形,等边三角形,圆形 (2)带有直角的图形:直角梯形,直角三角形 (3)具备特殊角度的图形(30,45,60,120oooo等) 【举一反三】如图,平行四边形ABCD 的两条对角线相交于M ,点P 是MD 的中点,若2AB =u u u r ,1AD =u u u r,且60BAD ∠=o,则AP CP ⋅=u u u r u u u r_________【答案】178-【解析】思路:本题抓住60BAD ∠=o这个特殊角,可以考虑建立坐标系,同时由2AB =u u u r ,1AD =u u u r可以写出各点坐标,从而将所求向量坐标化后即可求解 解:以AB 为x 轴,过A 的垂线作为y 轴答案:178-三.强化训练1.【2018届河北省武邑中学一模】是圆上两个动点,,,为线段的中点,则值为( )A. B. C. D. 【答案】B【解析】分析:利用基底表示所求向量,利用向量的数量积化简求解即可.详解:由,,所以•=()=,又△OAB 为等边三角形,所以=1×1×cos60°=.•==.故选:B .2.【2018届湖南省永州市三模】在中,,,,是上一点,且,则等于( )A. 1B. 2C. 3D. 4 【答案】C3.【2018·宝鸡质检】在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N (不与A ,C 重合)为AC 边上的两个动点,且满足|MN ―→|=2,则BM ―→·BN ―→的取值范围为( )A.⎣⎢⎡⎦⎥⎤32,2B.⎝ ⎛⎭⎪⎫32,2C.⎣⎢⎡⎭⎪⎫32,2 D.⎣⎢⎡⎭⎪⎫32,+∞ 【答案】C【解析】以等腰直角三角形的直角边BC 为x 轴,BA 为y 轴,建立平面直角坐标系,如图,则B (0,0),直线AC 的方程为x +y =2.设M (a,2-a ),则0<a <1,N (a +1,1-a ),∴BM ―→=(a,2-a ),BN ―→=(a +1,1-a ),∴BM ―→·BN ―→=a (a +1)+(2-a )(1-a )=2a 2-2a +2,∵0<a <1,∴当a =12时,BM ―→·BN ―→取得最小值32.又BM ―→·BN ―→<2,故BM ―→·BN ―→的取值范围为⎣⎢⎡⎭⎪⎫32,2.4.【2018届山东省潍坊市二模】在等腰ABC ∆中, AB AC =, 6BC =,点D 为边BC 的中心,则•AB BD =u u u v u u u v__________.【答案】9-【解析】分析:根据等腰三角形的性质判断出AD BC ⊥u u u v u u u v,结合向量的加法运算,可得()2AB BD BD ⋅=-u u u v u u u v u u u v ,再根据6BC =,即可求出.5.【2018届滨海新区七所重点学校联考】在平行四边形ABCD 中, 2AB =, 1AD =, 60BAD ∠=︒,E 为CD 的中点,若F 是线段BC 上一动点,则AF FE ⋅u u u v u u u v的取值范围是________【答案】512⎡⎤--⎢⎥⎣⎦,【解析】根据题意,设()01BF BC λλ=≤≤u uu v u u u v,则()()AF FE AB BF FC CE ⋅=+⋅+u u u v u u u v u u u v u u u v u u u u v u u u v()()112AB AD AD AB λλ⎡⎤=+⋅--⎢⎥⎣⎦u u u v u u u v u u u v u u u v ()()22111122AB AD AD AB AB AD λλλλ=-⋅+---⋅u u u v u u u v u u u v u u u v u u u v u u u v2212122λλλλλλ=-+---=--- 21324λ⎛⎫=-+- ⎪⎝⎭,结合二次函数的性质,可知当1λ=时取得最小值52-,当0λ=时取得最大值1-,故答案是5,12⎡⎤--⎢⎥⎣⎦. 6.【2018届广东省佛山市高三检测(二)】直角中,为中点,在斜边上,若,则__________.【答案】7.【2018届黑龙江省齐齐哈尔市二模】已知平行四边形中,,,点 是中点,,则_________.【答案】13. 【解析】由,得,设,∴,解得.∴.答案:138.【2018届浙江省嘉兴市高三4月模拟】已知,向量满足.当的夹角最大时,________. 【答案】【解析】设,,即,所以,此时,故答案为. 9.【2018届河南省南阳市第一中学高三第十四次考】若非零向量,满足,则在方向上的投影为__________.【答案】-1【解析】10.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO ―→·BC ―→=________.【答案】10【解析】法一:投影法如图,作OD ⊥BC ,垂足为D ,则D 是线段BC 的中点.作AE ⊥BC ,垂足为E .则AO ―→在BC ―→的方向上的投影为|AO ―→|·cos〈AO ―→,BC ―→〉=|ED ―→|,所以AO ―→·BC ―→=|AO ―→|·|BC ―→|·cos〈AO ―→,BC ―→〉=|ED ―→|·|BC ―→|.法二:基底法如图,作OD ⊥BC ,垂足为D ,则D 是线段BC 的中点,且OD ―→·BC ―→=0.所以AO ―→·BC ―→=(AB ―→+BD ―→+DO ―→)·BC ―→=AB ―→·BC ―→+BD ―→·BC ―→+DO ―→·BC ―→=AB ―→·BC ―→+BD ―→·BC ―→=-BA ―→·BC ―→+12BC ―→·BC ―→, 在△ABC 中,AB =4,AC =6,BC =7,由余弦定理,得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =-1387. 所以AO ―→·BC ―→=-BA ―→·BC ―→+12BC ―→·BC ―→ =-|BA ―→|·|BC ―→|cos ∠ABC +12|BC ―→|2 =-4×7×⎝ ⎛⎭⎪⎫-1387+12×(7)2=10. 法三:坐标法如图,作OD ⊥BC ,垂足为D ,则D 是线段BC 的中点.答案:10。