ACPM-9341规格书
- 格式:pdf
- 大小:765.12 KB
- 文档页数:14
ILI9341液晶显⽰17.1液晶显⽰原理TFT-LCD(Thin Film Transistor Liquid Crystal Display)即薄膜晶体管液晶显⽰器,是微电⼦技术与液晶显⽰器技术巧妙结合的的⼀种技术。
CRT显⽰器的⼯作原理是通电后灯丝发热,阴极被激发后发射出电⼦流,电⼦流受到⾼电压的⾦属层的加速,经过透镜聚焦形成极细的电⼦束打在荧光屏上,使荧光粉发光显⽰图像。
LCD显⽰器需要来⾃背后的光源,当光束通过这层液晶时,液晶会呈不规则扭转形状(形状由TFT上的信号与电压改变实现),所以液晶更像是⼀个个闸门,选择光线穿透与否,这样就可以在屏幕上看到深浅不⼀,错落有致的图像。
⽬前主流的LCD显⽰器都是TFT-LCD,是由原有液晶技术发展⽽来。
TFT液晶为每个像素都设有⼀个半导体开关,以此做到完全的单独控制⼀个像素点,液晶材料被夹在TFT阵列和彩⾊滤光⽚之间,通过改变刺激液晶的电压值就可以控制最后出现的光线强度和⾊彩,如图7-1所⽰。
图7-1 液晶显⽰屏结构图Kingst-32F1开发板配套的TFT-LCD是3.2⼨⼤⼩,分辨率为240*320,即⼀共有240×320=76800个像素点,每个像素都设有⼀个半导体开关,像素之间是相对独⽴的,这么多像素如何控制呢?联想⼀下51单⽚机驱动LED点阵时,为了减少IO⼝的使⽤,采⽤三⼋译码器驱动点阵模块。
同理,TFT-LCD也可以⽤专门的驱动器来驱动,教材所⽤的TFT-LCD采⽤ILI9341驱动芯⽚。
该控制芯⽚是封装在TFT-LCD内部,只留有外部引脚接⼝。
对于⽤户来说,只要掌握如何向ILI9341控制器发送指令和读写数据,并不需要再设计额外的驱动电路,该液晶的具体参数如表7-1所⽰。
7.1.1ILI9341硬件接⼝和像素格式ILI9341驱动芯⽚主要由接⼝电路、显存(GRAM)、LCD驱动电路、背光控制、电源等部分组成,主要结构如图7-2所⽰。
ILI9341a-Si TFT LCD Single Chip Driver with 240RGBx320 Resolution and 262K colorApplication NotesVersion: Preliminary V0.7Date: Mar. 22th 2011ILI TECHNOLOGY CORP.8F, No.38, Taiyuan St., Jhubei City, Hsinchu County 302,Taiwan, R.O.CTel.886-3-5600099; Fax.886-3-56000551.LGD 2.6” PANEL (3)1.1FPC A PPLICATION C IRCUIT (3)1.2LG2.8” I NITIAL C ODE (4)2.1BOE 2.0_2.4_3.14 FPC A PPLICATION C IRCUIT (8)2.2BOE2.0” I NITIAL C ODE (9)2.3BOE2.4” I NITIAL C ODE (12)2.3BOE2.4” I NITIAL C ODE (15)3.TM 2.2” 2.4” PANEL (20)3.1FPC A PPLICATION C IRCUIT (20)3.2TM2.4 INCH INITIAL CODE (21)3.3TM2.8 INCH INITIAL CODE (25)4.1HSD2.8 INCH INITIAL CODE (29)R EVISION H ISTORY1. LGD2.6/2.8 Panel1.1 FPC Application CircuitD B 13S D O C 11+V S Y N CI M 1V C O R EC 11U F /6.3VD B 0C 12+C 22+L E D +C S X R D X D B 15V G HI M 3L E D -C81U F /6.3V D B 1C 12-Connector 401234567891011121314151617181920212223242526272829333631323940373830343512345678910111213141516171819202122232425262728293336313239403738303435E N A B L E D B 5D B 11D B 3D B 14I M 0V D D I D B 10T E D B 2C 61U F /10V C 41U F /25VG N D D B 16C 22-V C I C 71U F /10V C 31U F /6.3VD B 7V C LD B 8V G LG N D D C X C 51U F /25VH S Y N C D B 12W R X C 91U F /6.3VC 21-D B 6D B 4C 21U F /6.3V S D A D O T C L K C 11-D B 17RE S X C 21+D D V D HI M 2D B 91.2 LG2.8” Initial Codevoid ILI9341_LG2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************// LCD_nRESET = 1; delayms(1);// Delay 1msLCD_nRESET = 0; delayms(10);// Delay 10ms // This delay time is necessaryLCD_nRESET = 1; delayms(120);// Delay 120 ms//************* Start Initial Sequence **********// LCD_ILI9341_CMD(0xCB); LCD_ILI9341_ Parameter (0x39); LCD_ILI9341_ Parameter (0x2C); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34); LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0XC1); LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xE8); LCD_ILI9341_ Parameter (0x85); LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xEA); LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xED); LCD_ILI9341_ Parameter (0x64); LCD_ILI9341_ Parameter (0x03); LCD_ILI9341_ Parameter (0X12); LCD_ILI9341_ Parameter (0X81) //功耗控制A //功耗控制B//内核电压控制//DDVDH控制//Power控制//驱动时序控制A//栅极驱动器的非重叠时序控制//EQ时序控制//预充电时间控制//驱动时序控制B//栅极驱动器时序控制//电源序列控制//软启动控制//电源序列控制//电源序列控制//DDVDH增强模式LCD_ILI9341_CMD(0xF7); LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xC0);//Power control LCD_ILI9341_ Parameter (0x1b);//VRH[5:0]LCD_ILI9341_CMD(0xC1);//Power controlLCD_ILI9341_ Parameter (0x10);//SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5);//VCM control LCD_ILI9341_ Parameter (0x2d); LCD_ILI9341_ Parameter (0x33);//LCD_ILI9341_CMD(0xC7);//VCM control2//LCD_ILI9341_ Parameter (0xCf);LCD_ILI9341_CMD(0x36);// Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00); LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_CMD(0xB6);// Display Function Control LCD_ILI9341_ Parameter (0x0A); LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF2);// 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26);//Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0);//Set Gamma LCD_ILI9341_ Parameter (0x0F); LCD_ILI9341_ Parameter (0x3a); LCD_ILI9341_ Parameter (0x36); LCD_ILI9341_ Parameter (0x0b);//泵比控制//比率控制//功耗控制1//设置GVDD电平//功耗控制2//设置用于升压电路的因子//VCOM控制1//设置VCOMH电压//设置VCOML电压//VCOM控制2//设置VCOM偏移电压//存储器访问控制//该指令定义帧存储器的读写扫描方向//(正常模式/全色模式下)帧速率控制//内部时钟分频设置,00时表示不分频//RTNA设置,用于设置1H(行)的时间//显示功能设置//设置在没显示区域的扫描格式,0A表示间隔扫描//设置源极、栅极驱动器的移动方向和扫描周期//使能3G//01使能3G,00不使能//伽马设置//选择伽马曲线1//正极伽马校准LCD_ILI9341_ Parameter (0x0d); LCD_ILI9341_ Parameter (0x06); LCD_ILI9341_ Parameter (0x4c); LCD_ILI9341_ Parameter (0x91); LCD_ILI9341_ Parameter (0x31); LCD_ILI9341_ Parameter (0x08); LCD_ILI9341_ Parameter (0x10); LCD_ILI9341_ Parameter (0x04); LCD_ILI9341_ Parameter (0x11); LCD_ILI9341_ Parameter (0x0c); LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x12);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x2c);LCD_ILI9341_ Parameter (0x92);LCD_ILI9341_ Parameter (0x3f);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x2e);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on } //负极伽马校准//退出睡眠模式//开显示void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offDelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep_ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}2. BOE 2.0” 2.4”3.14 Panel2.1 FPC Application Circuit0000002.2 BOE 2.0” Initial Codevoid ILI9341_BOE2.0_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xab);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x27);LCD_ILI9341_ Parameter (0x25);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x56);LCD_ILI9341_ Parameter (0X98);LCD_ILI9341_ Parameter (0x49);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x18);LCD_ILI9341_ Parameter (0x1a);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x29);LCD_ILI9341_ Parameter (0x67);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }2.3 BOE 2.4” Initial Codevoid ILI9341_BOE2.4_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xb5);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x26);LCD_ILI9341_ Parameter (0x24);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x54);LCD_ILI9341_ Parameter (0XA8);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x0C);LCD_ILI9341_ Parameter (0x17);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x19);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x2A);LCD_ILI9341_ Parameter (0x47);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}2.4 BOE3.14” Initial Codevoid ILI9341_BOE3.14_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0xc1);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x78);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x16);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x10); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x10); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x30);LCD_ILI9341_ Parameter (0x50);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0XA4);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x29);LCD_ILI9341_ Parameter (0x24);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x4e);LCD_ILI9341_ Parameter (0X78);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x13);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x17);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x16);LCD_ILI9341_ Parameter (0x1b);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x42);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0C);LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0x28);LCD_ILI9341_ Parameter (0x2f);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on}a-Si TFT LCD Single Chip Driver 240RGBx320 Resolution and 262K color ILI9341 3. TM 2.2” 2.4” Panel 3.1 FPC Application Circuit0000ILI9341 for TM 2.4" 2.2" Panel 0 003.2 Tianma 2.4” Initial Codevoid ILI9341_Tianma2.4_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x7A);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x3F);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xa7);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x48);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x23);LCD_ILI9341_ Parameter (0x1F);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x0E);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x4B);LCD_ILI9341_ Parameter (0XA8);LCD_ILI9341_ Parameter (0x3B);LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0x14);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1C);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x47);LCD_ILI9341_ Parameter (0x44);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0B);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x2F);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_CMD(0x11); //Exit Sleep Delayms(120);LCD_ILI9341_CMD(0x29); //Display on }void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on3.2 Tianma 2.8” Initial Codevoid ILI9341_Tianma2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x83);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_ Parameter (0x79);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x1D); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0Xbe);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x23);LCD_ILI9341_ Parameter (0x1F);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_ Parameter (0x4B);LCD_ILI9341_ Parameter (0Xf2);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x13);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0x12);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_ Parameter (0x11);LCD_ILI9341_ Parameter (0x07);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x81);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0e);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x32);LCD_ILI9341_ Parameter (0x38);LCD_ILI9341_ Parameter (0x0F);}void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display on4.1 HSD 2.8” Initial Codevoid ILI9341_HSD2.8_Initial(void){// VCI=2.8V//************* Reset LCD Driver ****************//LCD_nRESET = 1;delayms(1); // Delay 1msLCD_nRESET = 0;delayms(10); // Delay 10ms // This delay time is necessary LCD_nRESET = 1;delayms(120); // Delay 120 ms//************* Start Initial Sequence **********//LCD_ILI9341_CMD(0xCF);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0xC1);LCD_ILI9341_ Parameter (0X30);LCD_ILI9341_CMD(0xED);LCD_ILI9341_ Parameter (0x64);LCD_ILI9341_ Parameter (0x03);LCD_ILI9341_ Parameter (0X12);LCD_ILI9341_ Parameter (0X81);LCD_ILI9341_CMD(0xE8);LCD_ILI9341_ Parameter (0x85);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x7A);LCD_ILI9341_CMD(0xCB);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x2C);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x34);LCD_ILI9341_ Parameter (0x02);LCD_ILI9341_CMD(0xF7);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_CMD(0xEA);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0xC0); //Power controlLCD_ILI9341_ Parameter (0x21); //VRH[5:0]LCD_ILI9341_CMD(0xC1); //Power controlLCD_ILI9341_ Parameter (0x11); //SAP[2:0];BT[3:0]LCD_ILI9341_CMD(0xC5); //VCM controlLCD_ILI9341_ Parameter (0x31);LCD_ILI9341_ Parameter (0x3C);LCD_ILI9341_CMD(0xC7); //VCM control2LCD_ILI9341_ Parameter (0X9f);LCD_ILI9341_CMD(0x36); // Memory Access Control LCD_ILI9341_ Parameter (0x08);LCD_ILI9341_CMD(0xB1);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1B);LCD_ILI9341_CMD(0xB6); // Display Function Control LCD_ILI9341_ Parameter (0x0A);LCD_ILI9341_ Parameter (0xA2);LCD_ILI9341_CMD(0xF2); // 3Gamma Function Disable LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0x26); //Gamma curve selected LCD_ILI9341_ Parameter (0x01);LCD_ILI9341_CMD(0xE0); //Set GammaLCD_ILI9341_ Parameter (0x0F);LCD_ILI9341_ Parameter (0x20);LCD_ILI9341_ Parameter (0x1d);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x10);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x49);LCD_ILI9341_ Parameter (0Xa9);LCD_ILI9341_ Parameter (0x3b);LCD_ILI9341_ Parameter (0x0a);LCD_ILI9341_ Parameter (0x15);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x0c);LCD_ILI9341_ Parameter (0x06);LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_CMD(0XE1); //Set Gamma LCD_ILI9341_ Parameter (0x00);LCD_ILI9341_ Parameter (0x1f);LCD_ILI9341_ Parameter (0x22);LCD_ILI9341_ Parameter (0x04);LCD_ILI9341_ Parameter (0x0f);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x36);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x46);LCD_ILI9341_ Parameter (0x05);LCD_ILI9341_ Parameter (0x0b);LCD_ILI9341_ Parameter (0x09);LCD_ILI9341_ Parameter (0x33);LCD_ILI9341_ Parameter (0x39);LCD_ILI9341_ Parameter (0x0F);}void LCD_Enter Sleep_ILI9341(void){LCD_ILI9341_CMD(0x28); // Display offdelayms(20);LCD_ILI9341_CMD(0x10); // Enter Sleep mode }void LCD_Exit Sleep _ILI9341(void){LCD_ILI9341_CMD(0x11); // Sleep out Delayms(120);LCD_ILI9341_CMD(0x29); // Display onRevision HistoryRevision HistoryVersion No. Date Page Description V01 2010/09/14 All New CreationV02 2010/10/26 All Modified VCI1 GND,C31M GNDAdd BOE2.0” BOE2.4” LG2.6” initial code V03 2010/12/20 All Remove command EFV0.4 2011/02/20 ALL Add 1uF capacitor in Vcore padV0.5 2011/03/08 ALL Add Tianma initial code and modify LG/BOE initial code V0.6 2011/03/11 ALL Modify TM 2.4 and BOE initial codeV0.7 2011/03/22 ALL Add LG 2.8 TM2.8 BOE 3.14 HSD 2.8 initial code。
MS934芯片手册引言概述:本文旨在介绍MS934芯片,并提供详细的技术手册,以帮助读者更好地了解和使用该芯片。
MS934芯片是一款高性能的集成电路芯片,广泛应用于各种电子设备中。
通过本手册,读者将能够深入了解MS934芯片的功能特性、应用场景、工作原理等相关内容。
正文内容:1. MS934芯片的基本概述1.1 芯片的封装类型MS934芯片通常采用LQFP封装,方便安装和布局,同时具有良好的散热性能。
LQFP封装还提供了丰富的IO引脚数量和外部扩展接口,方便用户在应用中进行灵活连接。
1.2 芯片的主要功能MS934芯片具备高性能的处理器单元和丰富的外设功能,可提供多种功能实现的可能。
芯片内部集成了高速时钟电路、存储器控制器以及多种数字接口,能够满足复杂系统的需求。
1.3 芯片的主要规格参数内建8MB的Flash存储器和512KB的RAM,可支持大容量程序和数据存储。
工作频率可达200 MHz,提供强大的计算和处理能力。
支持多种数字接口,如UART、SPI、I2C等,满足不同的外设连接需求。
2. MS934芯片的应用场景2.1 智能家居领域MS934芯片能够提供稳定且高效的智能家居系统控制能力。
通过与各类传感器连接,实现对家庭环境的自动感知和调节,提升居住舒适度。
芯片的高性能处理能力和丰富的接口资源,可以满足智能家居中的复杂计算和通信需求。
2.2 工业自动化领域MS934芯片具备强大的实时控制能力和高速数据处理能力,非常适合用于工业自动化系统。
芯片支持多种高速通信接口,如以太网、CAN总线等,可实现与各类工控设备的联网。
同时,芯片提供了丰富的GPIO接口和模拟输入输出接口,方便连接和控制各类工业传感器和执行器。
2.3 汽车电子领域MS934芯片的高性能和可靠性使其成为汽车电子领域的理想选择。
芯片采用了低功耗设计,适应汽车电子系统对能效和环境适应性的要求。
可扩展的IO接口和丰富的外设功能,使芯片能够满足复杂的汽车电子系统集成和控制需求。
是德科技N9311X 用于低成本手持式和台式解决方案的射频和微波附件套件产品快报N9311X 射频和微波附件套件是是德科技经济型手持式和台式解决方案的补充产品(N934xC/N9340B/N9330B/N9310A/N9320B/N9000A)。
当您使用是德科技手持式和经济型台式解决方案进行测量时,这些附件可为您提供完整的解决方案。
天线天线频率范围天线增益重量尺寸其他信息N9311x-50070 至1000 MHz无65 克113.5 厘米(全长),19.5 厘米(伸缩), 10 节180 °可调伸缩式拉杆天线, 附带N 型(阳头) 至BNC 型(阴头) 适配器, 50 ΩN9311x-501700 至2500 MHz无70 克210x20毫米全向天线, 附带N型(阳头)至SMA型(阴头)适配器, 50 ΩN9311x-504*700 MHz - 4 GHz 4 dBi270 克340x200x25毫米对数周期天线, 50 ΩN9311x-508*680 MHz - 8 GHz 5 dBi250 克340x200x25毫米对数周期天线, 50 ΩN9311x-518*680 MHz - 18 GHz 5 dBi250 克340x200x25毫米对数周期天线, 50 Ω* N9311x-504/508/518 运输包装包括: 天线、铝制手提箱、可分离手枪式握柄与"微型三脚架" 模式、N 型至SMA 型工具箱。
N9311X-500N9311X-501N9311X-504带通滤波器带通滤波器 3 dB 通带抑制插入损耗VSWR阻抗N9311X-550814 至850 MHz≥ 36 dBc, 740 MHz 时≥36 dBc, 915 MHz 时≤0.5 dB≤1.550 ΩN9311X-551880 至915 MHz≥35 dBc, 862 MHz 时≥35 dBc, 932 MHz 时≤1 dB≤1.550 ΩN9311X-5521707.5 至1787.5 MHz≥35 dBc, 1550 MHz 时≥35 dBc, 1925 MHz 时≤0.4 dB≤1.550 ΩN9311X-5531845 至1915 MHz≥35 dBc, 1770 MHz 时≥35 dBc, 1986 MHz 时≤0.6 dB≤1.550 ΩN9311X-5541910 至1990 MHz≥35 dBc, 1825 MHz 时≥35 dBc, 2070 MHz 时≤0.6 dB≤1.550 ΩN9311X-551电缆N9311X-580N9311X-581N9311X-582N9311X-583N9311X-585N9311X-586稳相电缆, 1.5 米, N 型(阳头) 至N 型(阳头), 直流至18 GHz, 50 Ω稳相电缆, 3.0 米, N 型(阳头) 至N 型(阳头),直流至18 GHz, 50 Ω1.5 米, SMA 型(阳头)至SMA 型(阳头),直流至8 GHz, 50 Ω1.5 米, BNC 型(阳头)至 BNC 型(阳头),直流至 1 GHz, 50 Ω稳相电缆, 1.5 米, N 型(阳头) 至DIN 型(阴头),直流至18 GHz, 50 Ω稳相电缆, 1.5 米, N 型(阳头) 至N 型(阴头),直流至18 GHz, 50 Ω适配器N9311X-545N9311X-541N9311X-540N9311X-543N9311X-542N9311X-544N9311X-546N9311X-547N 型(阴头) 至SMA (阳头), 直流至12.4 GHz,50 ΩN 型(阳头)至SMA (阴头),直流至12.4 GHz,50 ΩN 型(阳头)至BNC (阴头),直流至2 GHz,50 ΩN 型(阴头)至BNC (阳头), 直流至4 GHz,50 ΩN 型(阴头)至7/16 DIN (阴头),直流至7.5 GHz,50 ΩN 型(阴头)至7/16 DIN (阳头),直流至7.5 GHz,50 ΩN 型(阴头)至N 型(阴头),直流至18 GHz,50 ΩN 型(阳头)至7/16 DIN (阴头),直流至7.5 GHz,50Ω衰减器衰减器衰减端口VSWR额定功率长度重量阻抗N9311X-56040 dBN 型(阳头) 至N 型(阴头)直流– 4.0 GHz : 1.154.0 – 8.5 GHz : 1.210 W 平均功率67.3 毫米(2.65 英寸)0.085 千克/3 盎司50 ΩN9311X-56140 dBN 型(阳头)至N 型(阴头)直流– 4.0 GHz : 1.154.0 – 8.5 GHz : 1.250 W 平均功率111.76 毫米(4.37 英寸)0.28 千克/10 盎司50 ΩN9311X-56040 dBN 型(阳头)至N 型(阴头)直流– 4.0 GHz : 1.154.0 – 8.5 GHz : 1.2100 W 平均功率112.01 毫米(4.41 英寸) 1.5 千克/3.3 磅50 Ω校准器校准器类型频率范围方向性阻抗连接器其他N9311x-201机械校准器直流至7 GHz42 dB50 ΩN 型(阳头)三合一OSLN9311X-561近场探头套件N9311X-10030 MHz 至3 GHz30 MHz 至3 GHz30 MHz 至2 GHz30 MHz 至3 GHz是德科技低成本手持式和台式仪器N934xC/N9340B 手持式频谱分析仪(HSA) /find/hsaN9330B 手持式电缆和天线测试仪/find/n9330N9000A CXA 信号分析仪/find/cxaN9310A 射频信号发生器/find/n9310aN9320B 射频频谱分析仪/find/n9320b/find/n9311x如欲获得是德科技的产品、应用和服务信息, 请与是德科技联系。
©版权归属于昂盛达电子有限公司Ver2.0 /Nov, 2020/ ASD934简介在某些情况下,用错误配置的市电电压为设备供电可能造成市电保险丝断开。
2.2 前面板介绍图 2.2:ASD934前面板图 2.3:ASD934后面板图 2.4.1:ASD934安卓触控屏图4.1.1 研发模式研发模式可以显示输入给无线充发射器的电压、电流、功率及D+、D-值,和显示无线充接收器提供给负载的电压、电流及功率值。
可同时或单独使用发射端或接收端,同时使用时可显示实时转换效率。
电源供电支持标准(无协议)、QC协议、PD协议三种方式,电压范围0~20V流所允许的上限值可设定。
负载受电可选择QI、Samsung、Apple和EPP标准,均支持5W、7.5W、10W四种功率选择,可测量电压范围0~20V,电流范围0~ 2A。
4.2自动模式无线充测试仪的自动模式主界面如图图4.2.1 自动模式每一项测试工序均可设置电源和负载两种功能,电源可选择标准、QC或PD协议,负载、Samsung、Apple和EPP标准。
可设置电源电压、最大输入电流、负载功率等多项参数,可设定发射和接收的参数范围作为判定指标。
保存好的工步条件可单步调试或复制粘贴、编辑、删除;自动测试按序号依次进行,可长按序号拖动进行自由排序;多道工序可保存为一个项目,项目数据可导出或导入至存储设备。
界面如图4.2.2所示。
图4.2.2 参数设置图5.1.1 开机启动界面点击操作终端右侧“设置”图标,弹出设置面板,如图5.1.2所示。
图5.1.2 设置面板“模式切换”图标即弹出模式切换窗口,可选择自动或研发两种工作模式,如图5.1.3所示。
图5.1.3 模式切换5.2研发模式图5.2.1 研发模式5.1章节的流程,正确连接测试线和无线充接收座并开机后,将发射端的测试线连接无线充发射器的电源输入接口,并将无线充接收座线圈位置正对于发射器线圈,应保持发射器线圈和接收器线圈位于同一中心轴上。
产品名称密级LC930型WIFI模块用户手册公开产品版本共15页V100AR9331芯片2.4G无线WIFI模块用户手册V1.0拟制:JOHN日期:2013-04-22审核:日期:审核:日期:批准:日期:修订记录日期修订版本描述作者2013-8-4 1.0首次建立John深圳市灵卡技术科技有限公司版权所有侵权必究目录1概述(Introduction) (4)2特性列表(Feature List) (4)3指标性能列表 (5)4接口定义 (6)5外观尺寸 (9)6控制协议 (9)7应用电路 (9)AR9331芯片2.4G无线WIFI模块用户手册关键词:摘要:本文描述。
缩略语清单:对本文所用缩略语进行说明,要求提供每个缩略语的英文全名和中文解释Abbreviations缩略Full Spelling英文全拼Chinese Explanation中文解释ETHERNET以太网NTSC北美地区电视标准PAL中国大陆地区电视标准UART Universal Asynchronous通用异步接收/发送WiFi无线局域网络通信标准VGA图像分辨率640x480 QVGA图像分辨率320x240GPIO通用输入输出端口PWM脉冲宽度调制1概述(Introduction)LC930是深圳灵卡技术推出的低成本,较低功耗,高性能嵌入式WiFi模块。
采用高通AR9331一体化单芯片WIFI无线SOC解决方案.内部集成CPU,WIFI基带,PA,使产品体积显著减小。
LC930引出了众多功能接口,例如:串口,SPI主设备口,网口,USB口,I2S接口,GPIO口等,使得LC930可以广泛应用在无线数据传输,多媒体音视频传输,无线数据存储等应用场合。
LC930是一款基于高通Atheros ARA9331的芯片,8MB Flash,64MB DDR2的全新功能WIFI核心模块。
采用IEEE802.11n,1T1R最高可达150Mbps,具有1个USB2.0,1个高速UART串口,多个GPIO接口。
L9341QUAD LOW SIDE DRIVERAVANCE DATADU/DT AND DI/DT CONTROLPWM CONTROLLED OUTPUT CURRENT SHORT CURRENT PROTECTION AND DI-AGNOSTICINTEGRATED FLYBACK DIODE UNDERVOLTAGE SHUTDOWNOVERVOLTAGE AND UNDERVOLTAGE DI-AGNOSTICOVERTEMPERATURE DIAGNOSTICDESCRIPTIONThe L9341is a monolithic integrated circuit real-ized in Multipower BCD-II mixed technology.The driver is intended for inductive loads in synchro-nous PWM applications,especially for valve driv-ers.The output voltage and current rise and fall slopes du/dt and di/dt are controlled.This is advanced information on a new product now in development or undergoing evaluation.Details are subject to change without notice.March 1994UNDERVOLTAGE SHUTDOWNDIAGNOSTICDRIVERSHORT CURRENT PROTECTIONCHANNEL 1CHANNEL 4CHANNEL 3CHANNEL 2VflythV offthCOMP1COMP2I OSCSDOSDISCLKRES1SERIAL INTERFACE&PWM CONTROLLBIAS7115148613511RES2310912REXTCS4OUT3OUT4GNDVSV sI I scc I OUT1I I OUT2OUT3I OUT4OSCCI GNDC BATD BATVccCO1CO2CCO3O4OUT2VCC2outsOUT1di /dt &du /dt CONTROLTHERMAL FLAG220nF10nF 10nF10nF10nF10uFR ext 12.4k 10nFΩBLOCK &APPLICATION DIAGRAMMultiwatt 15ORDERING NUMBERS:L9341VL9341HMULTIPOWER BCD TECHNOLOGY1/10ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V CC V CC Voltage Range -0.3to 6V V S V S Voltage Range-0.3to 24V V spmax VS Voltage Range for t ≤400ms -2to 40V V st Schaffner Transient Pulses on V Ssee note 1VVin Input Voltage Range for SDI;SCLK;CS;RES1;RES2-0.3to V CC +0.3V outOutput Voltage Range for all Outputs:Negative Positive–0.3intern.clamped to V SV V I outOutput Current for all Outputs:Negative Positive–2+2A A for Transient with t <10ms Negative Positive–55A A Schaffner Transient Pulses on Outputsee note 2V ESDESD Voltage Capability (MIL 883C)1500V THERMAL DATASymbol ParameterValue Unit R th j-case Thermal Resistance Junction to Case3°C/W R th j-amb Thermal Resistance Junction to Ambient mounted on PC Board 35°C/W T sdh Thermal Hysteresis 20°C T sdThermal DiagnosticT j >150°CNotes:1.Schaffner transient specification:DIN 40839test waveforms of the following type:1,2,3a,3b,5and 6.The pulses are applied to the application circuit according to fig.3.2.The maximum output current results from the Schaffner pulses specified in note 1.PIN CONNECTION (Top view)L93412/10ELECTRICAL CHARACTERISTICS(Unless otherwise specified:8V≤V S≤24V;4.7V≤V CC≤5.3V;–40°C≤Tj≤150°C;I O≤1A(note3);I O≤1.5A;V sp=V S for t≤400ms;V OUTP=V OUT for t≤400ms;R ext=12.4KΩ±1%).Symbol Parameter Test Condition Min.Typ.Max.UnitI ccq V cc Quiescent Current All Outputs Off13mAI sq V s Quiescent Current All Outputs Off1425mAV ccu V cc Undervoltage Threshold See Note434 4.7V V ccr V cc Range for RES1and RES2Operation3VR on On Resistance I o=1A T j=125°CT j=25°C 750450mΩmΩI o off Off State Output Current Outputs Off1.4V≤V o≤V sV outp=V sp=40V 112.5410mAmAV outf Output Voltage During Flyback I o=1A Output OffT j=25°C T j=125°C V s+1.3V s+1.1VVI gndf Current to GND during Flyback(see note5)I o=1A Output OffV s=24VV sp=40V17204452mAmAI out r Reverse Leakage Current V sp-V o=40V500µA V inH High Input Level of SCLK,SDI,CS,RES1,RES20.7*V cc V cc+0.3VV inL Low Input Level of SCLK,SDI,CS,RES1,RES2–0.30.3*Vcc VV REShys Hysteresis of Reset InputsRES1,RES20.31VI inRESH Input Current on RES1,RES2RES i=H;-2V≤V sp≤8VRES i=H;8V≤V sp≤40V –1051010µAµAI in Input Current on SCLK,SDI,CS–2V≤Vsp≤40V–1010µA V SDOH High Level SDO Output Voltage I SDO=-1mA-2V≤V sp≤40V0.9*V cc V cc V V SDOL Low Level SDO Output Voltage I SDO=1mA-2V≤V sp≤40V00.4VI SDOZ SDO Tristate High-Z LeakageCurrent 0≤V SDO≤V cc–2V≤V sp≤40V–1010µAPWM duty PWM Duty Cycle1/1615/16 K f Frequency Accuracy Constant See Note60.93*K fn K fn 1.07*K fnV flyth Flyback Diagnostic ComparatorThreshold 40≥V sp≥8VV s≤8VV s–11.5V s–0.4VVV offth Off State DiagnosticComparator Threshold1.52VI outl Output Current Limitation Threshold see Note7 1.5 2.5A t dpo Delay Time PWM Signal to Out.515µs S ov Output Voltage Rise and FallSlope|du/dt|(from10to90%of V o)Fig.2 1.010V/µsS oc Output Current Rise and FallSlope|di/dt|0.1≤Io≤1.5A(from10to90%of I o)25125mA/µsNotes:3.The mean value is I o=1T∫I o(t)dtT;4.The outputs are switced off for Vcc≤Vccu.The logic is not reseted.For a reset,RES1or RES2must be used.5.This current is measured in the GND-terminal when one single output is in flyback and consists of the supply current added to the value of the output current source and the leakage current of the flyback diode.This leakage current is less than1%of the nominal flyback current.6.The PWM frequency is def ined by an external capacitor.The PWM oscillator frequency is:f pwm=f osc32with f osc=K fC osc⋅1A/V and k in=15⋅10-6;the range is:300Hz≤f pwm≤3000Hz.The OSC Pin can be alternatively driven by an external TTL/CMOS signal.7.For I out≥I outl an internal comparator switches the corresponding output off for the current PWM cycle.L93413/1015CLKPWM3PWM4PWM1PWM214131211109876543210Figure 1:Logic Diagram of PWM Generation.+12VI sI s12V01A1A00du/dtdu/dt di/dtdi/dt di/dtdi/dt 5%5%Internal PWM SignalI ICurrent through Flyback Diode Current through Low Side SwitchI GNDout V outt dpo outt dpof I fD DMOSDOUTV sDI fOutput Voltage V20mH510nF220nFFigure 2:Output Switching Diagram.220nFD1Schaffner Generator4x 10nF-2V to 40VVsGNDOUT1OUT2OUT3OUT44x 1nF+12V10uFVCC+5VFigure 3:Test Circuit for Schaffner Pulses.INTERNAL CLOCKL93414/10MSB 14131211321LSB MSB14131211321LSBSCLK SDI SDOCS SCLK SDISDO t clcl t chclt cht clt clcht chcht sut ht dt clzt oht zch1514015CSFigure 4:SynchronousSerial Interface Protocol.f clock Clock Frequencymin.DC max.2MHzt ch Width of Clock Input High Puls min.200ns t cl Widh of Clock Input Low Puls min.200ns t cicl Clock Low Before CS Low min.200ns t chcl Clock High After CS Low min.200ns t clch Clock Low Before CS High min.200ns t chch Clock High After CS High min.200ns t ciz SDO Low-Z CS Low min.0ns max.400ns t zch SDO High-Z CS High max.400nst su SDI Input Setup Time min.80ns t h SDI Input Hold Timemin.80nst d SDO Output Delay Time (C L =50pF)max.100nst ohSDO Output Hold Timemin.0nsL93415/10L9341Figure5:PWM Generation Function Table.Bit3-0PWM1PWM2PWM3PWM4OUTPUT 000015/1615/1615/1615/16OFF 00011/1615/161/1615/16ON 00102/1614/162/1614/16ON 00113/1613/163/1613/16ON 01004/1612/164/1612/16ON 01015/1611/165/1611/16ON 01106/1610/166/1610/16ON 01117/169/167/169/16ON 10008/168/168/168/16ON 10019/167/169/167/16ON 101010/166/1610/166/16ON 101111/165/1611/165/16ON 110012/164/1612/164/16ON 110113/163/1613/163/16ON 111014/162/1614/162/16ON 111115/161/1615/161/16ONFigure6:PWM Information From Microcontroller to QLSD. Contents0P10PWM Duty Cycle for Channel1/Bit0:LSB1P11PWM Duty Cycle for Channel1/Bit12P12PWM Duty Cycle for Channel1/Bit23P13PWM Duty Cycle for Channel1/Bit3:MSB4P20PWM Duty Cycle for Channel2/Bit0:LSB5P21PWM Duty Cycle for Channel2/Bit1:6P22PWM Duty Cycle for Channel2/Bit2:7P23PWM Duty Cycle for Channel2/Bit3:MSB8P30PWM Duty Cycle for Channel3/Bit0:LSB9P31PWM Duty Cycle for Channel3/Bit1:10P32PWM Duty Cycle for Channel3/Bit2:11P33PWM Duty Cycle for Channel3/Bit3:MSB12P40PWM Duty Cycle for Channel4/Bit0:LSB13P41PWM Duty Cycle for Channel4/Bit1:14P42PWM Duty Cycle for Channel4/Bit2:15P43PWM Duty Cycle for Channel4/Bit3:MSB6/10Bit Contents0F11COMP1State at Positive Edge of PWM1(0:V out1>V flyth ;1:V out1<V flyth )1F12COMP2State at Negative Edge of PWM1(1:V out1>V offth ;0:V out1<V ofth )2F21COMP1State at Positive Edge of PWM2(0:V out2>V flyth ;1:V out2<V flyth )3F22COMP2State at Negative Edge of PWM2(1:V out2>V ofth ;0:V out2<V ofth )4F31COMP1State at Positive Edge of PWM3(0:V out3>V flyth ;1:V out3<V flyth )5F32COMP2State at Negative Edge of PWM3(1:V out3>V offth ;0:V out3<V ofth )6F41COMP1State at Positive Edge of PWM4(0:V out4>V flyth ;1:V out4<V flyth )7F42COMP2State at Negative Edge of PWM4(1:V out4>Voffth ;0:V out4<V ofth )8RES1Logic State of RES1Input (0:RES1=L ;1:RES1=H)9RES2Logic State of RES2Input (0:RES2=L ;1:RES2=H)10TSDF Thermal Diagnostic Flag (0:Overtemperature ;1:Normal )11C1Current at Negative Edge of PWM1(0:I out >I outl ;1:I out <I outl )12C2Current at Negative Edge of PWM2(0:I out >I outl ;1:I out <I outl )13C3Current at Negative Edge of PWM3(0:I out >I outl ;1:I out <I outl )14C4Current at Negative Edge of PWM4(0:I out >I outl ;1:I out <I outl )151Framing Information (always 1)Figure 7:Diagnostic Information from QLSD to Microcontroller.PWMV OUTPWM V OUT I Dt Ct VdPOPWMON t tminSample point COMP2Sample point COMP1dPOt t VPWMOFFtminSample point COMP2Sample point COMP1Fig.1Fig.2Figure 8.Fig.AFig.BNote:For safty diagnostic take notice of the following conditions:t PWMON ≥t dPOMAX +t C +t V (see Fig.A)t C =I D S OCMINt V =V outfmax S OVMINt PWMOF F ≥t dPOMAX +t V (see Fig.B)L93417/10FUNCTIONAL DESCRIPTIONThe U511is a PWM quad low side driver for in-ductive loads.The duty cycle of the internal gen-erated PWM signal is set by a microcontroller via a serial interface for each output.An output slope limitation for both dv/dt and di/dt is implemented to reduce RFI.The PWM generation is realized avoiding a simultaneous output switching.As a result,di/dt becomes smaller.Integrated flyback diodes clamp the output voltage during the fly-back phase of the low side switches.The driver is protected against short circuit.An undervoltage shutdown circuit switches off all out-puts if V cc is less then V ccu.Below the shutdown voltage all outputs remain in off state regardless of the input state.After each malfunction which resets the driver,only the serial link interface can reactivate the normal function.In case of overcur-rent(I out=I out1),an internal comparator switches the output off.The overcurrent information can be read via the serial link for each driver separately at the negative edge of the corresponding PWM signal.The interface to the microcontroller is realized with a16bit synchronous serial peripheral inter-face(SPI).If CS is switched low,the serial link becomes active and SDO goes to low impedance. At the rising edge of the SCLK signal,one of the 16bit of data stored in a shift register appear se-quencely at SDO.These data contain the8error flags,the status of thermal diagnostic flag and the external reset sources RES1,RES2and the over-current flgs c1...c4.The last bit is framing infor-mation(see fig.7).At each falling edge of SCLK, one of the16bits of data sent by the microcon-troller is transferred via the SDI input to the driver. These data contain the duty-cycle information for the internal PWM generation(4times4bit).On the rising edge of CS the previously stored in-formation is transferred to the circuits.SDO be-come now high impedance and SDI is inactive. The serial interface of the QLSD is cascadable with the serial link interface of another QLSD, thus obtaining a32bit serial link information wich can control eight inductive loads.For a safety data transfer the takeover of data bits is only real-ized when the number of SCLK-clocks is n x16 (n≥1).The PWM duty cycle is set by4bit for each out-put independently via the serial link.If all four bits for an output are zero,the output is turned off,but the error diagnosis will work correctly(see fig.5 and6).The PWM frequency is defined by an ex-ternal capacitor on the OSC pin.Rext defines through the reference current the output current slope,the diagnostic current sink and the internal oscillator frequency(together with C osc).For error diagnosis the voltage on the output is measured during the on and off state of the par-ticular output driver.Upon the rising edge of the PWM signal(at this moment the power output is off and will be switched on)the status of COMP1 is stored into an internal latch.On the falling edge of the PWM signal(the power output is on and will be switched off)the status of COMP2is stored into another internal latch.This information can be read via the serial link for each output driver separately(see fig.7).The thermal diagnostic switch the thermal flag to 0in case of overtemperature T≥T sd.It will be switched to1with the hysteresis T sdth in case of T<T sd-T sdh.To avoid male functions due to extensive noise or spikes at the supply pins V CC,V S and R ext must be blocked externally via capacitors.L9341 8/10MULTIWATT15PACKAGE MECHANICAL DATADIM.mm inchMIN.TYP.MAX.MIN.TYP.MAX.A50.197B 2.650.104C 1.60.063D10.039E0.490.550.0190.022F0.660.750.0260.030G 1.02 1.27 1.520.0400.0500.060G117.5317.7818.030.6900.7000.710H119.60.772H220.20.795L21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L7 2.65 2.90.1040.114M 4.25 4.55 4.850.1670.1790.191M1 4.63 5.08 5.530.1820.2000.218S 1.9 2.60.0750.102S1 1.9 2.60.0750.102Dia1 3.65 3.850.1440.152L93419/10L9341Information furnished is believed to be accurate and reliable.However,SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.Specifications men-tioned in this publication are subject to change without notice.This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without ex-press written approval of SGS-THOMSON Microelectronics.©1994SGS-THOMSON Microelectronics-All Rights ReservedSGS-THOMSON Microelectronics GROUP OF COMPANIESAustralia-Brazil-France-Germany-Hong Kong-Italy-Japan-Korea-Malaysia-Malta-Morocco-The Netherlands-Singapore-Spain-Sweden-Switzerland-Taiwan-Thaliand-United Kingdom-U.S.A.10/10。
产品规格书模板整理表姓名:职业工种:申请级别:受理机构:填报日期:产品规格书ZG-5000-EIEEE802.11 g室外无线网桥1.版本修订2.产品规格1.硬件规格ZG-5000-E的硬件规格见下表:表1 硬件规格2.软件规格ZG-5000-E的软件规格见下表:表2 软件规格1.物理规格ZG-5000-E的物理规格见下表:表3 物理规格2.环境规格ZG-5000-E的环境规格见下表:表4环境规格3.安规/国家认证4.包装规格1.1.0.4″六位米字数码管2.红色发光3.黑面白胶,共阴显示2.用途数字显示3.极限参数(T A=25℃)注:脉冲宽度0.1ms,占空比1/10,防静电使用,焊接时间在2-3秒之间,使用环境保持干燥通风。
4.光电参数(T A=25℃)5.线路图、外形尺寸其余公差:±0.25单位:mm 6.晶片特性曲线:产品规格书Product Specification客户名称:产品型号:LS-SMD-42WP4LB-DMX512-03产品名称:Φ42全彩贴片点光源产品描述:SMD5050 4灯全彩点控DC15V PC注塑深圳市银幕光电科技有限公司Shenzhen LEDSigns Technology Co.,Ltd地址:深圳市宝安区石岩镇洲石路明金海第二工业园A栋三楼Adress:3F, Block A,Min Jin Hai 2nd Industrial park, Zhoushi Road, Bao’an District, Shenzhen.一、产品特点★美观,高端,大方,典雅;★灯珠采用超高亮度贴片5050光源,绿色安全、节能环保;★基于 SMD 贴片特性,光衰小,发光角度≥120°,一致性好;★一体化卡扣式无接头防拽连接设计;★采用德国进口高导热胶全灌封防水设计,不易发黄,具有全防水、防腐、防酸碱、抗UV,防护等级为 IP67,增强了产品的使用寿命和适应性;★产品呈柔性,应用灵活,多种安装方式可选。
Pro-face GP承蒙使用日本Digital公司Pro-face GP系列触摸屏工业图形显示器产品,万分感谢。
在开始使用GP之前,请认真阅读本手册的有关说明。
本手册对GP产品的硬件特性、连接及初始化设定等内容作介绍。
警告:为了安全、正确地使用该装置,请遵守下列准则。
* 因为存在触电的危险,因此在连接电源线到GP上时,确保电源线没有接通电源。
* 由于GP内部装有高电压部件,当拆解该装置时,可能会引起触电,不要拆解GP。
* 不要使用超过电压范围的电源。
使用超过指定电压范围的电源,可能会损坏GP。
* 在有可燃性气体的环境中不要使用GP,否则可能引起爆炸。
* GP使用一个锂电池用来支持内部时钟数据。
如果错误的更换电池,可能引起爆炸。
为了避免危险,请不要自己更换电池。
当需要更换电池时,请与天任联系。
* 在涉及生命或有重大灾难的情况下,不要使用触摸屏键。
应使用单独的开关。
* 当GP与它的主控制器之间的通信出现错误时,请设计你的系统以便机器动作不会出现错误。
如果不这样,人有受到伤害的危险并且有可能损坏设备。
预防措施:* 不要用硬的或重物碰撞触摸屏,或用太大的力量按触摸屏,因为可能会导致无法修补的损伤。
* 如果放置GP的环境温度超出了规定的温度范围,GP将可能被损坏。
* 在GP的内部,不允许有水、液体或金属物质,否则会使GP损坏或触电。
* 避免减少GP的通风空间,或在易升温的环境中存放、使用GP。
* 避免在阳光直射、灰尘多、肮脏的环境中存放使用GP。
* GP是精密仪器。
注意不要对GP有大的冲击或振动,否则仪器容易损坏。
* 不要使用油漆,有机溶剂或强酸复合物擦拭显示器。
* 因为可能会有无法预料的事情发生,请对您的画面数据做备份。
GP系列触摸屏工业图形显示器用户手册目录第一章技术条件1.1一般规格 ---------------------------------------------------- 4 1.2功能特点 ---------------------------------------------------- 5 1.3GP各部分名称 ----------------------------------------------- 10 1.4外形尺寸 ---------------------------------------------------- 10 第二章安装与接线------------------------------------------------ 12第三章OFF-LINE(离线)方式3.1 进入OFF-LINE方式 ------------------------------------------- 15 3.2 主菜单 ---------------------------------------------------- 16 3.3 初始化—标准操作 -------------------------------------------- 16 3.4 自诊断—标准操作 -------------------------------------------- 16 3.5 画面数据传送 ---------------------------------------------- 17 第四章初始化4.1 初始化屏幕 ------------------------------------------------ 18 4.2 初始化项目 ------------------------------------------------ 18 4.3 系统环境设置 ---------------------------------------------- 19 4.4 I/O设置 -------------------------------------------------- 22 4.5 PLC设置 -------------------------------------------------- 26 4.6 初始化存储器 ---------------------------------------------- 29 4.7 时间设置 -------------------------------------------------- 30 4.8 屏幕设置 -------------------------------------------------- 30 第五章G P运行方式和出错信息5.1 进入运行(RUN)方式 ---------------------------------------- 31 5.2 问题解决 -------------------------------------------------- 31 5.3 自诊断 ---------------------------------------------------- 34 5.4 出错信息 -------------------------------------------------- 37第一章技术条件日本DIGITAL公司的Pro-face GP系列产品,目前有GP70和GP77两大系列。
ACPM-9341LTE Band41/38/xGP MIPI APT PA2.0x2.5mm Power Amplifier ModulePreliminary Data SheetFeatures∙Thin Package (0.9mm typ.)∙Excellent Linearity in Average Power Tracking Mode∙MIPI RFFE Interface∙2-mode power∙10-pin surface mounting package∙Internal 50ohm matching networks for both RF input and output∙Separate Drive and Output VCC Supplies∙Green - Lead-free and RoHS compliantApplications∙Band41 TD-LTE∙Band38 TD-LTE∙xGPOrdering InformationPart Number Number of Devices ContainerACPM-9341-BLK 100 BULKACPM-9341-TR1 1,000 178mm (7”) Tape/ReelThis preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Avago Technologies releases this product for general sales, Avago Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.Absolute Maximum RatingsNo damage assuming only one parameter is set at limit at a time with all other parameters set at or below nominal valueOperation of any single parameter outside these conditions with the remaining parameters set at or below nominalvalues may result in permanent damageDescription Min.Typ.Max.Unit RF Input Power 0 10.0 dBmDC Supply Voltage 0 3.4 5.0 VControl Voltage 0 1.8 3.3 VStorage Temperature (Tstg) -55 25 +125 ℃Recommended Operating ConditionDescription Min.Typ.Max.UnitDC Supply VoltageVbatVCC1 & VCC2 3.20.53.43.44.53.5VOperating Frequency (fo) 2496 2690 MHz Ambient Temperature (Ta) -20 25 +90 ԨMIPI RFFE InterfacePA Slave Configuration Registers and Address MappingReg Addr Register Name # of Bits R/W DefaultValueBIDSupportGSIDSupportTriggerSupportComments0x00 Register 0 7R/W 0x00 No No YesBits 6:3 – ReservedBit 2 – PA EnableBits 1:0 – PA Mode01: HPM – APT10: LPM – APT0x01 Register 1 8 R/W 0x00 No No Yes PA Bias Fixed0x02‐0x19 Register 2 –Register 19‐ ‐ ‐ ‐ ‐ ‐ Reserved0x1A RFFE_STATUS 8R/W(SeeNote1)0x00 No No NoBit 7 – Software resetBit 6 – Command Frame ParityErrorBit 5 – Command Length ErrorBit 4 – Address Frame Parity ErrorBit 3 – Data Frame Parity ErrorBit 2 – Read Unused RegisterBit 1 – Write Unused RegisterBit 0 – BID/GID Error0x1B GROUP_SID 8 R/W 0x00 No No No Bits 7:4 – Reserved (Reads 0x0) Bits 3:0 ‐ Group Slave ID0x1C PM_TRIG 8 R/W 0x80 Yes (SeeNote 2)Yes (SeeNote 2)NoBits 7:6 – PWR_MODE00: Normal Operation (ACTIVE)01: (STARTUP)10: Default (LOW POWER)11: ReservedBit 5 – Trigger Mask 2Bit 4 – Trigger Mask 1Bit 3 – Trigger Mask 0Bit 2 – Trigger 2Bit 1 – Trigger 1Bit 0 – Trigger 00x1D PRODUCT_ID 8 R 0x0A No No No P ID bits 7:0 for B41 (0000 1010)0x1E MANUFACTURER_ID8 R 0x07 No No No Manufacturer ID lower byte0x1F MAN_USID 6 R/W 0x1F No No No Bits 7:6 – Spare (0x0)Bits 5:4 – Manufacturer ID upper bitsBits 3:0 ‐ USIDNotes:1. Read of the Status register will yield the current value and the content will be cleared on the completion of Read Command Sequence.2. BID/GSID support for PM_TRIG register applies only to bits 7:6 (PWR_MODE) and bits 2:0 (Trigger 2‐0)PA Control SequenceTo be updatedSpecificationTimingTo be updatedDocumentsReference[1] MIPI® Alliance Specification for RF Front-End Control Interface, Version 1.01 Revision 0.04 – 26 July 2011Electrical Characteristics- Conditions: VCC1/2=3.4V, T=25℃, Zin/Zout=50ohmCharacteristics Condition Min. Typ. Max. Unit Operating Frequency Range 2496 – 2690 MHz Maximum Output Power (High Power Mode) LTE, MPR=0dB 28.4 dBm Gain (LTE MPR=0dB)High Power Mode, Pout = 28.4dBm 27 dBMid Power Mode , Pout = 13.5dBm 18 dBPower Added Efficiency High Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB,VCC1/2=3.4V35 %High Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=3.2V36.6 %Mid Power Mode, Pout=13.5dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=2.1V12.95 %Total Supply Current High Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB,VCC1/2=3.4V594 mAHigh Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=3.2V606 mAMid Power Mode, Pout=13.5dBm, LTE 10MHz12RB MPR=0dB, VCC1/2 =2.1V84 mAPower Added Efficiency (APT) (Overall PAE - Assumes ɳdcdc 80%- 93%) High Power Mode ,Pout=28.4dBm, LTE10MHz12RB MPR=0dB, VCC1/2=3.4V;ɳdcdc=93%36.2 %High Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=3.2V ɳdcdc=93%40.4 %Mid Power Mode, Pout=13.5dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=2.1V; ɳdcdc=80%18.7 %Total Supply Current (APT) (Overall PAE - Assumes ɳdcdc 80%- 93%) High Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=3.2V; ɳdcdc=93%576 mAHigh Power Mode ,Pout=28.4dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=3.2V; ɳdcdc=93%547 mAMid Power Mode, Pout=13.5dBm, LTE 10MHz12RB MPR=0dB, VCC1/2=2.1V; ɳdcdc=80%56 mADigital Control Signal Current (SCLK, SDATA) 50 µA Total Current in Power-down mode 10 µA Quiescent CurrentHigh Power Mode TBD mAMid Power Mode TBD mALTEAdjacent Channel Leakage Ratio E-UTRA ACLR Pout < (maximum power –MPR) -38.1 dBc UTRA ACLR1 Pout < (maximum power –MPR) -37.4 dBc UTRA ACLR2Pout < (maximum power –MPR)-47 dBcHarmonics2fo3fo High Power Mode, Pout=28.4dBmTBDTBDdBcdBcStability (Spurious Output) VSWR 5:1, All phase dBcInput VSWR 2:1Rx Band Noise Power 10MHz LTE, +30MHz offset from Tx,average +/-4.5MHz , 20RBTBD dBm/Hz GPS Band Noise Power High Power Mode, Pout=28.4dBm TBD dBm/HzISM Band Noise Power High Power Mode, Pout=28.4dBm TBD dBm/HzRuggedness Pout<28.4dBm, Pin<10dBm, All phaseHigh Power Mode10:1LTE signal signal configuration used:3GPP2 TDD-LTE Coexistence, Table 6.6.2.3.2.1 Note 2TDD-LTE, 10MHz, 12RB, RB_start=0 MPR=0 Pout=28.4dBm TDD-LTE, 10MHz, 50RB, MPR=1 Pout=27.4dBmFootprintAll dimensions are in millimeterX-Ray Top ViewPIN DescriptionPin #NameDescription1 VCC1DC Supply Voltage, connect 1st RF stagecollector to which APT applied ( 0.5V~3.5V) 2 RFINRF Input3 VBATDC Supply Voltage, connect to bias circuitrywith fix voltage (higher than 3.2V)4 VIO RFFE Enable5 SDATA RFFE Data6 SCLK RFFE Clock7 GND Ground8 NC No Connection9 RFOUTRF Output10 VCC2DC Supply Voltage, connect to 2nd RF stage collector to which APT applied ( 0.5V~3.5V)Package DimensionsAll dimensions are in millimeterMarking SpecificationDate Code Table (Year & Month Code)D – Date CodeZZ – Assembly Lot Identification 9341 – Device CodeNote: Prior to production release, the marking will be ‘EDZZ’. After the completion of Avago qualification testing and production release, the marking will revert to ‘DZZ’, as shown above.Evaluation Board SchematicEvaluation Board DescriptionMetallizationSolder Mask OpeningSolder Paste Stencil Aperture*Notes :1. CPL_IN(ISO) line and RFout line are recommended to be at the different layer for better CPL_IN(ISO)/RFout isolation.PCB Design GuidelinesThe recommended PCB land pattern is shown in figures on the left side. The substrate is coated with solder mask between the I/O and conductive paddle to protect the gold pads from short circuit that is caused by solder bleeding/bridging.Stencil Design GuidelinesA properly designed solder screen or stencil is required to ensure optimum amount of solder paste is deposited onto the PCB pads. The recommended stencil layout is shown here. Reducing the stencil opening can potentially generate more voids. On the other hand, stencil openings larger than 100% will lead to excessive solder paste smear or bridging across the I/O pads or conductive paddle to adjacent I/O pads. Considering the fact that solder paste thickness will directly affect the quality of the solder joint, a good choice is to use laser cut stencil composed of0.100mm(4mils) or 0.127mm(5mils) thick stainless steel which is capable of producing the required fine stencil outline.Handling and StorageESD (Electrostatic Discharge)Electrostatic discharge occurs naturally in the environment. With the increase in voltage potential, the outlet of neutralization or discharge will be sought. If the acquired discharge route is through a semiconductor device, destructive damage will result. ESD countermeasure methods should be developed and used to control potential ESD damage during handling in a factory environment at each manufacturing site.MSL (Moisture Sensitivity Level)Plastic encapsulated surface mount package is sensitive to damage induced by absorbed moisture and temperature. Avago Technologies follows JEDEC Standard J-STD 020B. Each component and package type is classified for moisture sensitivity by soaking a known dry package at various temperatures and relative humidity, and times. After soak, the components are subjected to three consecutive simulated reflows.The out of bag exposure time maximum limits are determined by the classification test describe below which corresponds to a MSL classification level 6 to 1 according to the JEDEC standardIPC/JEDEC J-STD-020B and J-STD-033.ACPM-9341 is MSL3. Thus, according to the J-STD-033 p.11 the maximum Manufacturers Exposure Time (MET) for this part is 168 hours. After this time period, the part would need to be removed from the reel, de-taped and then re-baked. MSL classification reflow temperature for the ACPM-9341 is targeted at 260℃ +0/-5℃. Figure and table on next page show typical SMT profile for maximum temperature of 260 +0/-5℃.Moisture Classification Level and Floor LifeMSL Level Floor Life (out of bag) at factory ambient =< 30oC/60% RH or as stated1 Unlimited at =< 30oC/85% RH2 1year2a 4weeks3 168 hours4 72hours5 48hours5a 24hours6 Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label Note :1. The MSL Level is marked on the MSL Label on each shipping bag.Reflow Profile RecommendationsTypical SMT Reflow Profile for Maximum Temperature = 260 +0/-5ԨTypical SMT Reflow Profile for Maximum Temperature = 260 +0/ -5ԨProfile Feature Sn-Pb Solder Pb-Free SolderAverage ramp-up rate (TL to TP) 3Ԩ/sec max 3Ԩ /sec maxPreheat- Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts) 100Ԩ150Ԩ60-120 sec150Ԩ200Ԩ60-180 secTsmax to TL- Ramp-up Rate 3Ԩ /sec max Time maintained above:- Temperature (TL) - Time (TL) 183Ԩ60-150 sec217Ԩ60-150 secPeak temperature (Tp) 240 +0/-5Ԩ 260+0/-5ԨTime within 5Ԩ of actual PeakTemperature (tp)10-30 sec 20-40 sec Ramp-down Rate 6Ԩ /sec max 6Ԩ /sec max Time 25Ԩ to Peak Temperature 6 min max. 8 min max.Storage ConditionPackages described in this document must be stored in sealed moisture barrier, antistatic bags. Shelf life in a sealed moisture barrier bag is 12 months at <40Ԩ and 90% relative humidity (RH) J-STD-033 p.7.Out-of-Bag Time DurationAfter unpacking the device must be soldered to the PCB within 168 hours as listed in the J-STD-020B p.11 with factory conditions <30Ԩ and 60% RH.BakingIt is not necessary to re-bake the part if both conditions (storage conditions and out-of bag conditions) have been satisfied. Baking must be done if at least one of the conditions above have not been satisfied. The baking conditions are 125Ԩ for 12 hours J-STD-033 p.8.CAUTIONTape and reel materials typically cannot be baked at the temperature described above. If out-of-bag exposure time is exceeded, parts must be baked for a longer time at low temperatures, or the parts must be de-reeled, de-taped, re-baked and then put back on tape and reel. (See moisture sensitive warning label on each shipping bag for information of baking). Board ReworkComponent Removal, Rework and RemountIf a component is to be removed from the board, it is recommended that localized heating be used and the maximum body temperatures of any surface mount component on the board not exceed 200Ԩ. This method will minimize moisture related component damage. If any component temperature exceeds 200Ԩ, the board must be baked dry per 4-2 prior to reworkand/or component removal. Component temperatures shall be measured at the top center of the package body. Any SMD packages that have not exceeded their floor life can be exposed to a maximum body temperature as high as their specified maximum reflow temperature. Removal for Failure AnalysisNot following the above requirements may cause moisture/reflow damage that could hinder or completely prevent the determination of the original failure mechanism.Baking of Populated BoardsSome SMD packages and board materials are not able to withstand long duration bakes at 125Ԩ. Examples of this are some FR-4 materials, which cannot withstand a 24 hr bake at 125Ԩ. Batteries and electrolytic capacitors are also temperature sensitive. With component and board temperature restrictions in mind, choose a bake temperature from Table 4-1 in J-STD 033; then determine the appropriate bake duration based on the component to be removed. For additional considerations see IPC-7711 andIPC-7721.Derating due to Factory Environmental ConditionsFactory floor life exposures for SMD packages removed from the dry bags will be a function of the ambient environmental conditions. A safe, yet conservative, handling approach is to expose the SMD packages only up to the maximum time limits for each moisture sensitivity level as shown in next table. This approach, however, does not work if the factory humidity or temperature is greater than the testing conditions of 30Ԩ/60% RH. A solution for addressing this problem is to derate the exposure times based on the knowledge of moisture diffusion in the component package materials ref. JESD22-A120). Recommended equivalent total floor life exposures can be estimated for a range of humidities and temperatures based on the nominal plastic thickness for each device.Table on next page lists equivalent derated floor lives for humidities ranging from 20-90% RH for three temperature, 20Ԩ, 25Ԩ, and 30Ԩ.Table on next page is applicable to SMDs molded with novolac, biphenyl or multifunctional epoxy mold compounds. The following assumptions were used in calculating this table:1. Activation Energy for diffusion = 0.35eV (smallest known value).2. For ≤60% RH, use Diffusivity = 0.121exp ( -0.35eV/kT) mm2/s (this used smallest known Diffusivity @ 30Ԩ).3. For >60% RH, use Diffusivity = 1.320exp ( -0.35eV/kT) mm2/s (this used largest known Diffusivity @ 30Ԩ).Recommended Equivalent Total Floor Life (days) @ 20Ԩ, 25 Ԩ & 30 Ԩ, 35 ԨFor ICs with Novolac, Biphenyl and Multifunctional Epoxies (Reflow at same temperature at which the component was classified) Maximum Percent Relative HumidityMaximum Percent Relative HumidityPackage Type and Body Thickness Moisture SensitivityLevel5% 10% 20% 30% 40% 50% 60% 70% 80% 90%Body Thickness ≥3.1 mmIncludingPQFPs >84 pin,PLCCs (square)All MQFPsorAll BGAs ≥1 mm Level 2a∞∞∞∞∞∞∞∞9412416723144607810332415369263342571628364771014195710134681035Ԩ30Ԩ25Ԩ20ԨLevel 3∞∞∞∞∞∞∞∞81013177911146810136791267912457103468345735Ԩ30Ԩ25Ԩ20ԨLevel 4∞∞∞∞35683457345724572357234623351234123435Ԩ30Ԩ25Ԩ20ԨLevel 5∞∞∞∞24572357234622451235123412231123112335Ԩ30Ԩ25Ԩ20ԨLevel 5a∞∞∞∞12351124112311231123112211121112111235Ԩ30Ԩ25Ԩ20ԨBody 2.1 mm≤ Thickness<3.1 mm including PLCCs (rectangular)18-32 pin SOICs (wide body) SOICs ≥20 pins, PQFPs ≤80 pins Level 2a∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞5886148∞303951692228374934682345123435Ԩ30Ԩ25Ԩ20ԨLevel 3∞∞∞∞∞∞∞∞1219253291215197912156810135791223572235123435Ԩ30Ԩ25Ԩ20ԨLevel 4∞∞∞∞579114579345734562346234512341223112335Ԩ30Ԩ25Ԩ20ԨLevel 5∞∞∞∞34562345233522342234123411231113111235Ԩ30Ԩ25Ԩ20ԨLevel 5a∞∞∞∞12231122112211221122112211120.50.5120.50.51135Ԩ30Ԩ25Ԩ20ԨBody Thickness <2.1 mmincludingSOICs <18 pinAll TQFPs, TSOPsorAll BGAs <1 mm bodythickness Level 2a∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞1728∞∞11220.51120.511135Ԩ30Ԩ25Ԩ20ԨLevel 3∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞811142057101311220.51120.511135Ԩ30Ԩ25Ԩ20ԨLevel 4∞∞∞∞∞∞∞∞∞∞∞∞79121745793457234611220.51120.511135Ԩ30Ԩ25Ԩ20ԨLevel 5∞∞∞∞∞∞∞∞7131826356823462235123411220.51120.511135Ԩ30Ԩ25Ԩ20ԨLevel 5a∞∞∞∞71013182356123411231122112211120.51120.50.51135Ԩ30Ԩ25Ԩ20ԨFor product information and a complete list of distributors, please go to our web site: 。