变压器详细计算开关电源3
- 格式:doc
- 大小:94.51 KB
- 文档页数:12
开关电源高频变压器计算开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各种电子设备中。
而高频变压器则是开关电源中的关键组件之一,用于实现电压的变换和隔离。
本文将从开关电源和高频变压器的工作原理、计算方法以及应用领域等方面进行介绍。
一、开关电源的工作原理开关电源通过不断开关的方式将输入的交流电转换为高频的脉冲电流,再经过整流、滤波等环节得到稳定的直流电。
其主要由输入端的滤波电容、整流桥、开关管、变压器、输出端的滤波电容和稳压电路等组成。
其中,开关管的开关频率决定了开关电源的工作频率,一般为几十kHz到几百kHz不等。
二、高频变压器的工作原理高频变压器是开关电源中的关键元件,主要用于实现输入端与输出端的电压变换和隔离。
其工作原理基于电磁感应定律,通过输入端的脉冲电流在变压器的磁场作用下产生电磁感应,从而实现电压的变换。
高频变压器通常由高导磁率的铁芯和绕组组成,绕组的匝数比决定了输入端与输出端的电压变换比。
三、高频变压器的计算方法在设计高频变压器时,需要根据具体的输入输出电压要求和功率需求进行计算。
一般来说,高频变压器的计算主要包括以下几个方面:1. 输入电压和输出电压:根据实际需求确定输入端和输出端的电压值。
2. 输入功率和输出功率:根据实际需求确定输入端和输出端的功率值。
3. 变压器的变比:根据输入端和输出端的电压值计算变压器的变比,即输入匝数与输出匝数的比值。
4. 变压器的铁芯截面积:根据输入功率和开关频率计算变压器的铁芯截面积,以满足工作时的磁通密度要求。
5. 绕组的匝数和线径:根据变压器的变比和输入、输出功率计算绕组的匝数和线径,以满足工作时的电流和功率要求。
四、开关电源和高频变压器的应用领域开关电源和高频变压器广泛应用于各种电子设备中,包括电脑、手机、通信设备、工控设备、医疗仪器等。
其优势在于体积小、效率高、稳定性好,能够满足现代电子设备对电源的高要求。
总结:开关电源和高频变压器作为现代电子设备中不可或缺的组件,通过将交流电转换为直流电并实现电压变换和隔离,为电子设备提供了稳定的电源供应。
变压器计算方法
变压器是一种用于改变交流电压的静止电气设备,常用于电力系统、工业生产和居民用电等领域。
变压器容量是指变压器本身所能承担的功率,单位是千伏安(KVA),是变压器能带负荷的能力。
变压器的容量由变压器结构决定,包括铁芯和绕组等。
在选择变压器容量时,需要考虑变压器的负载情况、运行环境、电压等级等因素。
变压器容量的计算方法如下:
1. 计算负载的每相最大功率:将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。
(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。
)在实际应用中,需要根据具体的情况选择合适的变压器,并进行相关的计算和验证,以确保变压器能够安全、可靠、经济地运行。
如果你还想了解更多关于变压器的计算方法,可以继续向我提问。
开关电源之正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算
正激式开关电源变压器参数的计算主要从这几个方面来考虑。
一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。
关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。
正激式开关电源变压器初级线圈匝数的计算
图1中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。
当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。
根据电磁感应定理:
e1 = L1di/dt = N1dф/dt = Ui —— K接通期间(1-92)
式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,ф为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。
其中磁通
量ф还可以表示为:
ф= S×B (1-93)
上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。
把(1-93)式代入(1-92)式并进行积分:。
RCC方式电源变压器设计计算方法在RCC设计中,一般先设定工作频率,如为50K,然後设定工作DUTY在90V入力,最大输出时为假设设计一功率为12V/1A1. 最大输出电流为定格电流的~倍,取倍.2. 出力电力Pout =Vout × Iout = 12V×1.3A =3. 入力电力Pin = Pout/∩=(RCC效率∩一般设在65%~75% , 取70%)4. 入力平均电流Iin=Pin/Vdc(INmin)=85*=( Vin(DCmin) = Vac(Inmin)×5. T=1/swF=1/50K=20uS Ton=Toff=10uS6. Ipk=Iin入力平均电流*2/DUTY=*2/=7. 一次侧电感量Lp=Vin(DCmin)*Ton/Ipk=102*10/=1159uH 取1160uH8. 选择磁芯,根据磁芯规格,选择EI28. Ae=0.85CM^2 动作磁通=2000~2800取2000(当然,这是很保守的作法)9.Np=Ipk*Lp*K/Ae*▲Bm=*1160*100)/*200 0)=60Ts10. Ns=(Vout+Vf)*Np/Vin(DCmin)= 取8Ts11. 辅助电压取5V(电晶体) 如功率管使用MOSFET则应设为11V12. Vin(DCmin)/Np=Vb/Nb----Nb= 取3Ts 故变压器的构造如下:Lp=1160uHNp=60TsNs=7TsNb=3Ts以上采用三明治绕法:三明治绕法详解:所谓三明治就是夹层绕法,因结构如同三明治一样,所以叫三明治绕法.通常会有两种绕法:1. 一次侧平均法,就是a.最底层绕上一半的圈数,b.然後再绕二次侧,c.再绕一次侧的另一半.d.再绕Vcc.最常用的做法还会在二次侧上下两层各加一铜箔或绕线屏蔽.在小功率上会起到Y电容的效果,所以说在小功率上有些人说可以不用Y电容,其实在整体成本上没有太大的差别.2. 屏蔽绕法, 就是a.最底层绕上与二次相同的圈数,b.然後再绕二次侧,c.再绕一次侧的其它圈数.d.再绕Vcc.这种方式很少加屏蔽.当然还有很多种不同的配对方式.但基本原理是一样的.三明治的真正用意就是减小漏感,人为的在一次与二次之间加上一个寄生电容.用三明治绕法不可以短路为什么(短路指输出短路保护) 设计参数选取有问题。
开关电源反激式变压器计算公式与方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]原边电感量:Lp =(Dmax * Vindcmin)/ (fs * ΔIp)开关管耐压:Vmos =Vindcmax+开关管耐压裕量(一般用150V)+Vf*反激电压(Vf)的计算: Vindcmin * Dmax = Vf *(1- Dmax)原边与副边的匝比:Np / Ns = Vf / Vout原边与副边的匝比:Np / Ns = (Vdcmin * Dmax)/ [Vout * (1-Dmax)]原边电流:[1/2 * (Ip1 + Ip2)] * Dmax * Vindcmin = Pout / η磁芯:AwAe = (Lp * Ip2^2 * 10^4 / Bw * Ko * Kj) *原边匝数:Np = (Lp * Ip^2 * 10^4 )/ (Bw * Ae)气隙:lg = π * Np^2 * Ae * 10^-8 / LpLp:原边电感量, 单位:HVindcmin:输入直流最小电压,单位:VDmax:最大占空比: 取值~Fs:开关频率 (或周期T),单位:HzΔIp:原边电流变化量,单位:AVmos:开关管耐压,单位:VVf:反激电压:即副边反射电压,单位:VNp:原边匝数,单位:T)Ns:副边匝数,单位:T)Vout:副边输出电压,单位:Vη:变压器的工作效率Ae:磁芯截面积,单位:cm2Ip2:原边峰值电流,单位:ABw:磁芯工作磁感应强度,单位:T 取值~Ko:窗口有效用系数,根据安规的要求和输出路数决定,一般为~Kj:电流密度系数,一般取395A/ cm2(或取500A/cm2)Lg:气隙长度,单位:cm变压器的亿裕量一般取150V什么是反激电压假定原副边的匝比为n,在原边开关管截止时,开关管的高压端电压为Vin(dc)+nVo, nVo即为反激到原边的电压。
开关电源变压器的计算一、开关电源变压器设计的基本原理1.输出功率的计算输出功率是决定变压器尺寸和设计的重要参数。
通常,输出功率可以通过以下公式计算:Pout = Vout * Iout其中,Pout为输出功率,Vout为输出电压,Iout为输出电流。
根据实际应用需求,可以确定输出功率。
2.输入电压范围的确定输入电压范围是指变压器能够工作的最小和最大输入电压。
根据实际应用需求和电网电压标准,可以确定输入电压范围。
3.输出电压的计算根据实际应用需求,可以确定输出电压。
输出电压主要由两个因素决定:输入电压和变压器变比。
可以根据以下公式计算输出电压:Vout = Vin * N2 / N1其中,Vout为输出电压,Vin为输入电压,N2为输出绕组匝数,N1为输入绕组匝数。
4.变压器的体积和重量的计算根据输入电压、输出功率和输出电压,可以计算变压器的体积和重量。
变压器的体积和重量主要由以下因素决定:输出功率、变压器结构和材料等。
二、开关电源变压器设计的步骤1.确定输出功率和输出电压。
2.计算输入电压范围。
3.根据输出电压计算变压器变比。
4.根据输入和输出电压、输出功率计算变压器的体积和重量。
5.根据实际应用需求选取合适的变压器结构和材料。
6.进行变压器的电磁设计和热设计。
7.进行变压器的样品制作和测试。
三、开关电源变压器设计中需要注意的问题在开关电源变压器设计中,需要注意以下问题:1.尽可能提高变压器的效率。
通过选择合适的材料、合理设计变压器结构和优化磁路设计,可以提高变压器的效率。
2.确保变压器的温升不超过允许的范围。
通过合理选择材料和冷却措施,可以有效控制变压器的温升。
3.考虑变压器的损耗。
变压器的损耗主要包括铜损耗和铁损耗。
合理选择导线截面积和变压器材料,可以降低损耗。
4.考虑变压器的磁导弹性。
变压器的磁导弹性是指在变压器工作时,磁导率随磁场强度的变化情况。
选择合适的铁芯材料和设计合理的磁路,可以降低磁导弹性对变压器性能的影响。
1:线径的计算:一般铜线截面积每平方mm 取值5安培电流。
(高频取4.95,低频取3.5.) 公式1:π×r 2=铜线截面积。
公式2:√I 输出电流4.951.13 π=3.141。
r=半径。
例题:假设铜线半径是1mm.3.141×1mm 2=3.141mm 2×5A=15.705A 电流。
15.7A.√15.74.951.13 =2.0mm 铜线直径。
2: 峰值功率计算。
Pout = (Vout+Vf) × Iout × 1.23:初级峰值电流计算:IPmax = 2×IP η×(1+k)×Vin(min)×DmaxIPmin = K × IP1K 为脉动电流,取值:0.4.4:输入电流公式:P out η÷PF=Pin ÷Vin=Iin 。
3:肖特基的取值计算。
肖特基一般取输出电流的2-3倍。
匝比一般是10比1输出峰值电压的计算:〈(Vin(max)×√2)+80V 〉÷n + Vout=峰值电压。
〈〔最大输入电压×√2〕+80V 〉÷匝比+输出电压。
例题:以输出5V 为例:〈〔最大输入电压264V ×1.414〕+80V 〉÷匝比10+输出电压5V 。
峰值电压等于==50.32V./*****************************************************************/开关变压器计算步骤:P-初级,S-次级, D-占空比,n 匝比,L-电感量,f 频率,η-效率, K-脉动电流。
T-时间,ON-开,NP-初级匝数,IP 峰值电流。
AE-磁芯截面积,查磁芯表。
Bm-磁通密度。
单位-高斯。
/******************************************************************* 要求: 输入电压《85-265V 》。
开关电源高频变压器计算方法开关电源的高频变压器是将输入电压转换为所需的输出电压的重要组成部分。
它通过高频变换的方式实现高效的能量转换,广泛应用于电子设备中。
高频变压器的设计计算方法主要包括两个方面:核心参数的选择和线圈参数的计算。
首先,选择合适的核心材料和尺寸。
核心材料具有一定的磁导率和饱和磁感应强度,核心尺寸则决定了变压器的功率和体积。
常用的核心材料有铁氧体、磁性粉末等。
选材时需要考虑到工作频率、变压器功率和尺寸等因素。
通常情况下,铁氧体具有较高的磁导率和饱和磁感应强度,适合高功率和高频率应用。
对于线圈参数的计算,首先需要确定变压器的变比,即输入电压与输出电压的比值。
根据变比关系可以计算出变压器的匝数比,即一边的匝数与另一边的匝数的比值。
线圈的匝数选择是根据匝数比和变压器的额定功率决定的,一般情况下,使用更细的线条,匝数更多的线圈,可以提高输出压缩。
同时,还需要考虑到线圈的直径、绕线方式和绝缘层等因素。
其次,根据变压器的功率和工作频率,计算出线圈的电流和电压。
功率P1等于输入电流I1与输入电压U1的乘积,功率P2等于输出电流I2与输出电压U2的乘积。
然后,根据选定的核心材料的饱和磁感应强度,计算出变压器的磁通,进而可计算出变压器的感应电势。
最后,根据上述参数计算出线圈的匝数N,根据线圈的直径和形状计算出线圈的尺寸,根据变压器的额定功率计算出线圈的截面积,根据线圈的长度和材料的电阻率计算出线圈的电阻。
当上述参数计算完成后,还需要进行电磁特性仿真和电路参数优化,以确保变压器的性能与设计要求相符。
总之,开关电源高频变压器的计算方法涉及到核心参数的选择和线圈参数的计算。
通过合理的设计和优化,可以实现高效、稳定的能量转换。
开关电源变压器计算公式开关电源变压器是一种常用的电力转换装置,用于将输入的交流电转换为所需的输出电压,并向负载提供电能。
在开关电源变压器的设计和计算中,有几个关键参数需要考虑,包括输入电压、输出电压、输出功率、变压比、工作频率等。
在进行开关电源变压器计算时,首先需要确定输出电压和输出功率。
输出电压可以根据负载的要求和应用的需要来确定,输出功率则可以通过负载的功率需求来计算。
一般来说,输出功率可以根据负载的额定电流和额定电压来计算,公式为:输出功率(W)=负载电流(A)×负载电压(V)接下来需要确定输入电压和变压比。
输入电压可以根据应用的电网电压来确定,变压比可以根据输出电压和输入电压的比例来计算,公式为:变压比=输出电压(V)/输入电压(V)在确定输入电压和变压比后,可以通过变压器的变比关系来计算变压器的参数。
变压器的变比关系可以表示为:N2/N1=U2/U1=I1/I2其中,N1和N2分别表示原边和副边的匝数,U1和U2分别表示输入电压和输出电压,I1和I2分别表示输入电流和输出电流。
通过变比关系可以计算出原边和副边的匝数,公式为:N1=N2×(U1/U2)N2=N1×(U2/U1)同时,还需要考虑实际变压器中的功率损耗。
功率损耗可以包括铜损耗和铁损耗两部分。
铜损耗是由于变压器中导线的电阻而产生的,可以通过负载电流和电阻来计算。
铁损耗则是由于变压器磁芯中磁场变化而产生的,可以根据变压器的材质和工作频率来估算。
最后,还需要考虑变压器的工作频率对变压器参数的影响。
工作频率会影响变压器的磁芯材质选择和变压器损耗的计算。
一般来说,变压器使用的材料可以根据工作频率的不同而选择,常见的有铁氧体、硅钢等材料。
综上所述,开关电源变压器的计算需要考虑多个参数,包括输出电压、输出功率、输入电压、变压比、匝数、功率损耗和工作频率等。
根据这些参数可以计算出变压器的基本参数,并选择合适的材料和设计方案来满足应用需求。
二.反激式变换器(Flyback Converter)的工作原理1).反激式变换器的电路结构如图一.2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).图一图二(a)当Q1存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为:ip(t)=ip(0)+1/Lp*∫0DT Vdc*dtVdc=Lp*dip/dt此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).图三(a)当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B 并没有相对的改变.当∆B 向负的方向改变时(即从Bw 降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co 和负载上.此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf 为二极管D1的压降). 次级线圈电流:is(t)=is(DT)-1/Ls*∫DT T V S (t)*dtLp=(Np/Ns)2*Ls (Ls 为次级线圈电感量)由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM).三.CCM模式下反激变压器设计的步骤1.确定电源规格.1).输入电压范围Vin=85—265Vac;2).输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A;3).变压器的效率ŋ=0.902.工作频率和最大占空比确定.取:工作频率fosc=100KHz, 最大占空比Dmax=0.45.T=1/fosc=10us.Ton(max)=0.45*10=4.5usToff=10-4.5=5.5us.3.计算变压器初与次级匝数比n(Np/Ns=n).最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V).根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+V f)*(1-Dmax)*n.n= [Vin(min)* Dmax]/ [(Vout+V f)*(1-Dmax)]n=[100*0.45]/[(5+1.0)*0.55]=13.644.变压器初级峰值电流的计算.设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V.+5V输出功率Pout1=(V01+V f)*I01*120%=6*10*1.2=72W+12V输出功率Pout2=(V02+V f)*I02=13*1=13W变压器次级输出总功率Pout=Pout1+Pout2=85W如图四, 设Ip2=k*Ip1, 取k=0.41/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ŋ1Ip1=2*Pout/[ŋ(1+k)*Vin(min)*Dmax] Ip2=2*85/[0.90*(1+0.4)*100*0.45]=3.00AIp2=0.4*Ip1=1.20A ( 图四) 5.变压器初级电感量的计算.由式子Vdc=Lp*dip/dt,得:Lp= Vin(min)*Ton(max)/[Ip1-Ip2]=100*4.5/[3.00-1.20]=250uH6.变压器铁芯的选择.根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*ŋ],其中: Pt(变压器的标称输出功率)= Pout=85WKo(窗口的铜填充系数)=0.4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=5A/mm2;Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90] =0.157cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:EER2834S铁氧体磁芯的有效截面积Ae=0.854cm2它的窗口面积Aw=148mm2=1.48cm2EER2834S的功率容量乘积为Ap =Ae*Aw=1.48*0.854=1.264cm4 >0.157cm4故选择EER2834S铁氧体磁芯.7.变压器初级匝数及气隙长度的计算.1).由Np=Lp*(Ip1-Ip2)/[Ae*Bm],得:Np=250*(3.00-1.20)/[85.4*0.15] =35.12 取Np=36由Lp=uo*ur*Np2*Ae/lg,得:气隙长度lg=uo*ur*Ae*Np2/Lp=4*3.14*10-7*1*85.4mm2*362/(250.0*10-3mH)=0.556mm 取lg=0.6mm2). 当+5V限流输出,Ip为最大时(Ip=Ip1=3.00A),检查Bmax.Bmax=Lp*Ip/[Ae*Np]=250*10-6*3.00/[85.4 mm2*36]=0.2440T=2440Gs <3000Gs因此变压器磁芯选择通过.8. 变压器次级匝数的计算.Ns1(5v)=Np/n=36/13.64=2.64 取Ns1=3Ns2(12v)=(12+1)* Ns1/(5+1)=6.50 取Ns2=7故初次级实际匝比:n=36/3=129.重新核算占空比Dmax和Dmin.1).当输入电压为最低时: Vin(min)=100Vdc.由Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n,得:Dmax=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(min)]=6*12/[6*12+100]=0.4182).当输入电压为最高时: Vin(max)=265*1.414=374.7Vdc.Dmin=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(max)]=6*12.00/[6*12.00+374.7]=0.1610. 重新核算变压器初级电流的峰值Ip和有效值Ip(rms).1).在输入电压为最低Vin(min)和占空比为Dmax条件下,计算Ip值和K值.(如图五)设Ip2=k*Ip1.实际输出功率Pout'=6*10+13*1=73W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout'/ŋ(1)K=1-[Vin(min)* Ton(max)]/(Ip1*Lp) (2)由(1)(2)得:Ip1=1/2*{2*Pout'*T/[ŋ* Vin(min)*Ton(max)]+Vin(min)* Ton(max)/Lp}=0.5*{2*73*10/[0.90*100*4.18]+100*4.18/250.0}=2.78AK=1-100*4.18/[2.78*250]=0.40Ip2=k*Ip1=2.78*0.40=1.11A2).初级电流有效值Ip(rms)=[Ton/(3T)*(Ip12+Ip22+Ip1*Ip2)]1/2=[0.418/3*(2.782+1.112+2.78*1.11)] 1/2=1.30AIp2(1.11A)t11. 次级线圈的峰值电流和有效值电流计算:当开关管截止时, 变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变.因此开关管截止时,初级峰值电流与匝数的乘积等于次级各绕组匝数与峰值电流乘积之和(Np*Ip=Ns1*Is1p+Ns2*Is2p).由于多路输出的次级电流波形是随各组负载电流的不同而不同, 因而次级电流的有效值也不同.然而次级负载电流小的回路电流波形,在连续时接近梯形波,在不连续时接近三角波,因此为了计算方便,可以先计算负载电流小的回路电流有效值. 1).首先假设+12V输出回路次级线圈的电流波形为连续,电流波形如下(图一):Is2(+12v)2(+12v)t(图六) (图七)1/2*[Is2p+Is2b]*toff/T=I02(3)Ls1*[Is2p–Is2b]/toff=V02+Vf (4)Ls2/Lp=(Ns2/Np)2(5)由(3)(4)(5)式得:Is2p=1/2*{2*I02/[1-D]+[V02+Vf]*[1-D]*T*Np2/[Ns22*Lp]}=0.5*{2*1/[1-0.418]+[12+1]*[1-0.418]*10*362/[72*250]}=5.72AIs2b =I01/[1-D]-1/2*[V01+Vf]*[1-D]*Np2/[Ns22*Lp]=1/0.582-0.5*13*0.582*10*362/[72*250]=-2.28A <0因此假设不成立.则+12V输出回路次级线圈的电流波形为不连续, 电流波形如上(图七).令+12V整流管导通时间为t’.将Is2b=0代入(3)(4)(5)式得:1/2*Is2p*t’/T=I02(6)Ls1*Is2p/t’=V02+Vf (7)Ls2/Lp=(Ns2/Np)2(8)由(6)(7)(8)式得:Is2p={(V02+Vf)*2*I02*T*Np2/[Lp*Ns22]}1/2={2*1*[12+1]*10*362/[72*250]} 1/2=5.24At’=2*I02*T/ Is2p=2*1*10/5.24=3.817us2).+12V输出回路次级线圈的有效值电流:Is2(rms)= [t’/(3T)]1/2*Is2p=[3.817/3*10] 1/2*5.24=1.87A3).+5v输出回路次级线圈的有效值电流计算:Is1rms= Is2(rms)*I01/I02=1.87*10/1=18.7A12.变压器初级线圈和次级线圈的线径计算.1).导线横截面积:前面已提到,取电流密度j=5A/mm2变压器初级线圈:导线截面积= Ip(rms)/j=1.3A/5A/mm2=0.26mm2变压器次级线圈:(+5V)导线截面积= Is1(rms)/j=18.7A/5A/mm2=3.74 mm2(+12V)导线截面积= Is2(rms)/j=1.87A/5A/mm2=0.374mm22).线径及根数的选取.考虑导线的趋肤效应,因此导线的线径建议不超过穿透厚度的2倍. 穿透厚度=66.1*k/(f)1/2k为材质常数,Cu在20℃时k=1.=66.1/(100*103)1/2=0.20因此导线的线径不要超过0.40mm.由于EER2834S骨架宽度为22mm,除去6.0mm的挡墙宽度,仅剩下16.0mm的线包宽度.因此所选线径必须满足每层线圈刚好绕满. 3).变压器初级线圈线径:线圈根数=0.26*4/[0.4*0.4*3.14]=0.26/0.1256=2取Φ0.40*2根并绕18圈,分两层串联绕线.4).变压器次级线圈线径:+5V: 线圈根数=3.74/0.1256=30取Φ0.40*10根并绕3圈, 分三层并联绕线.+12V: 线圈根数=0.374/0.1256=3取Φ0.40*1根并绕7圈, 分三层并联绕线.5).变压器绕线结构及工艺.为了减小变压器的漏感,建议采取三文治绕法,而且采取该绕法的电源EMI四.结论.由于连续模式下电流峰值比不连续模式下小,开关管的开关损耗较小,因此在功率稍大的反激变换器中均采用连续模式,且电源的效率比较高.由于反激式变压器的设计是反激变换器的设计重点,也是设计难点,如果参数不合理,则会直接影响到整个变换器的性能,严重者会造成磁芯饱和而损害开关管,因此在设计反激变压器时应小心谨慎,而且变压器的参数需要经过反复试验才能达到最佳.。