多传感器数据融合技术的理论及应用
- 格式:doc
- 大小:35.00 KB
- 文档页数:7
多传感器数据融合技术
多传感器数据融合技术是一项具有极高价值的技术,它可以将多个传感器的数据结合在一起,以改善测量、监测和控制系统的性能。
这种技术可以帮助系统更好地识别复杂的现象、更精确地检测环境变化以及更准确地控制系统的行为。
多传感器数据融合技术的原理主要是使用多个传感器收集信息,使用统计学和信号处理技术来综合处理这些信息,从而获得更准确的数据。
统计学和信号处理技术包括数据融合、滤波、跟踪、分类和预测等,它们共同作用可以帮助系统更好地提取感兴趣的信息,并根据信息调整系统行为。
多传感器数据融合技术在许多领域都有广泛的应用,例如自动驾驶、航空航天、航空航天、机器人技术和安全监控等。
比如,在自动驾驶技术中,多传感器数据融合技术可以收集来自多个传感器的数据,包括激光雷达、视觉传感器、摄像头等,它们可以收集有关路况的信息,从而帮助自动驾驶系统精准控制车辆行驶方向和速度。
总之,多传感器数据融合技术在许多领域都具有重要的作用,它可以帮助系统更精准地检测、控制和监测环境,从而提升系统的性能。
它是一项具有极高价值的技术,它将为未来的系统带来更多的发展机遇。
多传感器信息融合及应用1 多传感器信息融合及应用随着科技的不断发展,传感器技术得以广泛应用。
现代生活中,我们所使用的手机、智能家居等都有涉及到传感器的应用。
这些传感器所采集的数据,对于我们的日常生活有着重要的意义。
而多传感器信息融合技术,则是将多个传感器所采集的数据进行整合,从而更全面地了解事物并作出更准确的决策。
2 多传感器信息融合的方法多传感器信息融合技术有许多不同的方法,主要包括基于概率的融合方法、基于模型的融合方法、基于知识的融合方法等。
其中,基于概率的融合方法是目前应用最为广泛的一种方法。
该方法利用贝叶斯推断理论,将多个传感器所采集的数据进行融合,得出更准确、更可靠的结果。
而基于模型的融合方法,则利用数学模型对传感器采集的数据进行预测,从而可以实现更高效的数据融合。
此外,基于知识的融合方法也被广泛应用于智能系统领域。
3 多传感器信息融合的应用多传感器信息融合技术可以应用于各种领域,如智能交通、军事、医疗等。
其中,智能交通领域是多传感器信息融合技术应用最为广泛的领域之一。
通过多传感器信息融合,可以实现对交通流量、交通状况、驾驶行为等多个方面的监测和分析。
此外,在军事、医疗等领域,多传感器信息融合技术也可以实现更加全面、精准的监测和预测。
4 多传感器信息融合面临的挑战虽然多传感器信息融合技术可以为我们带来许多便利,但也面临着一些挑战。
首先,多传感器信息融合需要处理的数据量较大,需要大量的存储和处理能力。
其次,多传感器信息融合的精度和稳定性需要得到保障,否则会对应用产生严重的影响。
同时,多传感器信息融合技术还需要解决隐私保护、安全性等问题。
5 结论总之,多传感器信息融合技术是现代科技发展的一个重要方向,可以为我们带来许多便利。
在未来,我们需要更加注意多传感器信息融合技术的发展趋势,有效地解决面临的挑战,从而更好地应用于各个领域。
多传感器数据融合技术研究及应用随着科技发展,大量的传感器技术得到了广泛的应用,而多传感器数据融合技术也因此而生,成为了当今科技领域的一个热门话题。
本文将从多个角度深入探讨多传感器数据融合技术的研究现状以及应用前景。
一、多传感器数据融合技术简介多传感器数据融合技术是指将来自多个传感器的数据进行处理和整合,从而得到更加准确、全面的信息,提高数据处理和分析的精度和效率。
多传感器数据融合技术既可以用于研究基础理论,也可以应用于实际工程领域,如环境监测、智能交通、军事侦察等领域。
传感器是将感受到的物理量转化为电信号的装置,用于将环境信息转化为数据,工业、生活和科学研究领域中的各种设备都可以使用传感器技术。
而多传感器数据融合技术则是将不同类型和数量的传感器数据整合在一起,以期获得更加精确、全面的信息。
多传感器数据融合技术的主要优势在于能够在不同维度上提供更高的空间和时间分辨率,并且可以解决单个传感器所不能捕捉到的数据缺失问题,以此提高数据分析、处理和应用的精度和效率。
二、多传感器数据融合技术的研究现状当前,多传感器数据融合技术的研究和应用已经成为了很多领域的关注重点,相关学科如计算机科学、电子工程、物理学等也已经逐渐形成了完整的研究方向。
多传感器数据融合技术的研究包括数据处理、信息融合、模型构建、智能识别等方面,具体来说,主要包括以下几个方面:1. 数据融合算法数据融合是多传感器数据融合技术的核心内容,当前大量的研究工作主要关注如何对不同类型、来源和质量的传感器数据进行有效的融合,从而得到更加精准的数据信息。
当前,常用的数据融合算法主要包括加权平均法、卡尔曼滤波法、粒子滤波法、小波变换和小波包分解等,其中,小波变换技术较为全部。
2. 模型构建在多传感器数据融合技术中,模型构建是非常重要的一部分,它可以对不同传感器数据融合的模型进行建立和优化,以此提高数据融合的准确性和效率。
常见的模型构建技术包括神经网络、贝叶斯网络、决策树、支持向量机、两类模型、仿生学等等。
物联网多传感器数据融合技术研究第一章概述物联网是指通过互联网将各种智能设备互相连接在一起,实现人、物、环境和信息的互联互通。
而作为重要的组成部分,传感器为物联网提供了实时感知环境的能力。
多传感器数据融合技术可以将不同传感器采集的数据集成在一起,通过计算、过滤等处理方法,得到更精确、更完整的信息,从而提高物联网系统的性能和可靠性。
本文将从多传感器数据融合技术的基本原理、应用领域和研究进展三个方面来进行探讨。
第二章基本原理多传感器数据融合技术的基本原理是将不同传感器的数据集成在一起,并通过计算、过滤等方法来实现数据处理和信息提取的目的。
具体来说,多传感器数据融合技术可以分为两个层次:传感器层面和信息层面。
在传感器层面,多传感器数据融合技术主要涉及传感器的选择、位置和方向。
在选择传感器时需要根据被监测物体的特性和任务需求来确定传感器的类型、灵敏度、采样率等参数;在安装传感器时需要考虑位置和方向,以保证数据的完整性和准确性。
在信息层面,多传感器数据融合技术主要通过计算、决策和反馈三个步骤来实现数据处理和信息提取。
计算步骤涉及信号处理、特征提取、数据预处理等方法;决策步骤涉及数据的分类、聚类、识别等方法;反馈步骤涉及数据的输出和可视化。
第三章应用领域多传感器数据融合技术可以应用于多个领域,包括环境监测、智能交通、航空航天等。
在环境监测方面,多传感器数据融合技术可以实现对大气、水质、土壤等环境指标的监测和预测,为环保工作提供科学依据。
在智能交通方面,多传感器数据融合技术可以通过对交通流量、车辆速度、路况等参数的监测和分析,实现交通管理和安全预警。
在航空航天方面,多传感器数据融合技术可以通过对飞机或卫星传感器的集成和处理,实现空气动力学模型的构建和航天任务的规划。
第四章研究进展多传感器数据融合技术在各个应用领域都取得了显著的进展。
在环境监测方面,研究人员提出了一些新的传感器选择和安装方法,如通过遥感数据获取环境信息,通过机器学习算法对传感器数据进行处理等。
Matlab中的多传感器数据融合技术与应用引言随着科技的发展,传感器技术已经成为现代社会不可或缺的一部分。
传感器可以感知和测量各种物理量,如温度、压力、光强等,并将这些信息转化为数字信号。
然而,当多个传感器同时测量同一物理量时,由于传感器之间的不准确性以及环境干扰等因素,会产生数据不一致的问题。
为了提高数据的准确性和稳定性,多传感器数据融合技术应运而生。
一、多传感器数据融合技术的概念与意义1.1 多传感器数据融合技术的概念多传感器数据融合技术指的是将来自不同传感器的数据进行合并和处理,以获得更准确、可靠和全面的信息。
通过融合多个传感器数据,可以弥补单个传感器的不足,减小测量误差,并提高系统的性能。
1.2 多传感器数据融合技术的意义在现实生活中,许多应用需要同时监测多个物理量。
以无人驾驶汽车为例,它需要通过多个传感器获取道路、交通信号和周围车辆等信息,以做出安全而准确的驾驶决策。
而单个传感器可能无法满足所有的要求,所以需要将多个传感器的数据融合起来,提高系统的可靠性和鲁棒性。
二、多传感器数据融合技术的分类2.1 基于概率的多传感器数据融合技术基于概率的多传感器数据融合技术通过建立数学模型,将传感器的测量结果转化为概率分布,然后通过贝叶斯推断等方法将各个传感器的信息进行融合。
常见的方法包括卡尔曼滤波、粒子滤波等。
2.2 基于模型的多传感器数据融合技术基于模型的多传感器数据融合技术通过建立物理模型,描述传感器之间的关系,并通过最小二乘拟合等方法对传感器数据进行融合。
这种方法适用于已知传感器之间的数学关系的情况,如线性传感器等。
三、Matlab中的多传感器数据融合技术实现在Matlab中,可以利用多种工具箱和函数实现多传感器数据融合技术。
以下将介绍几种常用的方法。
3.1 卡尔曼滤波卡尔曼滤波是一种基于概率的多传感器数据融合技术,常用于估计系统的状态。
在Matlab中,可以使用“kalman”函数来实现卡尔曼滤波。
多传感器数据融合技术伴随着信息技术的发展,多传感器数据融合技术一直受到人们的关注。
多传感器数据融合技术可以通过多种传感器收集到大量的原始数据,并且在数据处理、信息提取和信息融合等方面发挥独特的作用,进而改善现有的信息处理方法,实现信息从传感器采集到最终用户处高效可靠地传输实现应用。
一、多传感器数据融合技术的基本概念多传感器数据融合技术是一种基于多源数据的技术,通过对来自不同传感器的原始数据进行数据融合,有效地整合多源信息,实现从传感器采集信息到最终用户处高效可靠地传输实现应用,其特点是可以实时获取被测物体的准确信息,实现更准确的判断和识别。
二、多传感器数据融合技术的应用领域(1)安全监控:利用多传感器数据融合技术可以进行安全监控,例如使用视频传感器来检测被监控地区的运动物体,通过捕获的原始图像数据可以实现更精确的目标跟踪和检测,从而提高安全效率。
(2)导航导引:多传感器数据融合技术可以较好地为导航导引系统提供信息,例如可以通过多传感器数据融合来实时获取目标位置及其周边环境信息,加快及精准地实现自动导引,提高导航系统的性能。
(3)车辆道路检测:利用多传感器数据融合技术可以实时收集和融合多源数据,结合现有的几何模型和视觉技术,可以大大提高道路检测的准确度,从而更有效地检测环境物体,进而改善车辆的行驶路径规划和安全管控。
三、多传感器数据融合技术的发展前景多传感器数据融合技术在各种领域应用受到越来越多的关注,然而尚有不少问题尚未解决,例如融合数据的精确性、融合算法的优化及如何更好地实现实时融合等问题,这些问题需要研究者们在未来的发展过程中进行研究,以期推动多传感器数据融合技术在各种领域的应用。
总之,多传感器数据融合技术是一种新兴的技术,其主要作用是将多源数据融合成有效信息,实现从传感器采集信息到最终用户处高效可靠地传输实现应用,已经广泛应用于安全监控、导航导引系统以及车辆道路检测等领域,且在未来发展前景良好。
多传感器信息融合及其运用多传感器信息融合是指利用不同传感器获取的信息并结合,以提高信息的准确性、完整性和可靠性。
随着科技的不断发展,传感器技术已经成为人们生活和工作中不可或缺的一部分,而多传感器信息融合技术的运用也越来越广泛。
本文将介绍多传感器信息融合的原理、技术和应用,并探讨其在各个领域的重要性和发展前景。
一、多传感器信息融合的原理和技术多传感器信息融合的原理是将来自不同传感器的信息进行整合,以得到更完整、准确的信息。
在实际应用中,多传感器信息融合通常包括数据融合、特征融合和决策融合三个方面。
数据融合是指将来自不同传感器的原始数据进行整合和处理,以得到更准确和可靠的信息。
这包括数据的预处理、校正、修正、配准、对齐、筛选和融合等过程。
数据融合技术主要包括数学建模、统计分析、数据处理、信号处理和图像处理等方法。
特征融合是指在数据融合的基础上,通过提取和融合不同传感器获取的特征信息,以得到更全面和丰富的信息。
特征融合技术主要包括特征提取、特征匹配、特征提取、特征融合和特征选择等方法。
决策融合是指在特征融合的基础上,通过运用不同的决策算法和技术,对融合后的信息进行最终的判定和决策。
决策融合技术主要包括模式识别、机器学习、人工智能、专家系统和智能控制等方法。
多传感器信息融合技术在军事、航空航天、环境监测、智能交通、医疗健康、工业制造、物联网等领域具有广泛的应用价值和前景。
在军事领域,多传感器信息融合技术被广泛应用于军事侦察、目标识别、导航定位、火力打击等方面,能够提高情报作战和精确打击的能力,提高作战效能和战场生存能力。
在航空航天领域,多传感器信息融合技术被广泛应用于航空器导航、空中交通管理、航天器控制、星座导航、太空探测等方面,能够提高航行安全和导航精度,提高系统可靠性和性能指标。
在环境监测领域,多传感器信息融合技术被广泛应用于气象预测、地震预警、海洋观测、污染监测等方面,能够提高监测精度和覆盖范围,提高预警和应急响应能力。
无人驾驶汽车中多传感器数据融合的技术分析与应用随着科技的不断进步和人们对智能交通系统的需求增加,无人驾驶汽车作为一种智能交通的重要组成部分,受到越来越多的关注。
而多传感器数据融合技术作为无人驾驶汽车的关键技术之一,对于实现汽车的自主感知和决策起着重要的作用。
本文将对无人驾驶汽车中多传感器数据融合的相关技术进行分析,并探讨其在实际应用中的具体应用场景。
一、多传感器数据融合技术的基本原理和作用多传感器数据融合技术是指将来自多个传感器(如激光雷达、摄像头、雷达等)采集到的数据进行合理的融合和处理,从而提高对环境感知的准确性和鲁棒性。
该技术的基本原理是将来自不同传感器的数据进行集成,以获取更全面、更准确、更可靠的环境信息。
多传感器数据融合技术在无人驾驶汽车中的作用主要有以下几个方面:1. 环境感知:通过融合多种传感器的数据,可以全面感知周围道路、障碍物和交通状况等信息,帮助车辆做出准确的判断和决策。
2. 地图生成:通过将来自不同传感器的数据进行匹配和融合,可以生成高精度的地图,为车辆提供准确的定位和导航信息。
3. 目标检测和识别:多传感器数据融合可以提高对行人、车辆、交通标识等目标的检测和识别准确性,从而帮助车辆实时调整行驶策略和路径规划。
4. 增强安全性:通过融合多种传感器的数据,并利用机器学习和深度学习等算法对数据进行处理和分析,可以更好地识别风险并做出相应的应对措施,提高行驶安全性。
二、多传感器数据融合技术的具体应用场景1. 高精度地图生成:通过将来自多个激光雷达、摄像头和卫星定位系统的数据进行融合,可以生成高精度的地图,为无人驾驶汽车的定位和导航提供准确的参考。
2. 环境感知和障碍物检测:将激光雷达、摄像头和雷达等传感器采集到的数据进行融合,可以全面感知周围环境中的障碍物,并做出相应的路径规划和避障策略。
3. 目标检测和识别:多传感器数据融合可以提高对行人、车辆、交通标识等目标的检测和识别准确性,从而帮助车辆实时调整行驶策略和路径规划。
一、概述随着物联网、智能交通系统、智能制造等领域的迅速发展,传感器技术的应用日益广泛。
多传感器信息融合技术作为其中一种重要技术,其原理和应用备受关注。
本文将针对多传感器信息融合技术的原理和应用进行深入探讨。
二、多传感器信息融合技术的原理1. 传感器信息融合概述传感器信息融合是利用多个传感器获得的信息,通过合理的融合算法和处理方法,得到比单个传感器更准确、更全面的信息。
传感器信息融合技术在多领域有着广泛的应用,如军事、航空航天、智能交通等。
2. 传感器融合的优势多传感器信息融合技术的优势主要表现在提高信息获取的准确性、可靠性和全面性等方面。
通过融合多个传感器的信息,可以弥补单个传感器信息不足的缺陷,提高信息的综合利用效率。
3. 传感器信息融合的原理传感器信息融合的原理主要包括数据融合和决策融合两个方面。
数据融合是将来自不同传感器的原始数据进行整合处理,得到更完整、更准确的信息;决策融合则是基于融合后的数据进行分析和判断,得出最终的决策结果。
4. 传感器信息融合的方法在实际应用中,常见的传感器信息融合方法包括卡尔曼滤波、粒子滤波、最大似然估计等。
这些方法在不同的应用场景下都能够有效地实现传感器信息的融合和提取。
三、多传感器信息融合技术的应用1. 智能交通系统中的应用在智能交通系统中,通过融合多个传感器的信息,如地磁传感器、摄像头、雷达等,可以实现对车辆、行人的实时监测和跟踪,提高交通管理的效率和精准度。
2. 智能制造领域中的应用在智能制造领域,通过融合各类传感器的信息,可以实现对生产过程的实时监测和控制,提高生产效率和产品质量。
3. 军事领域中的应用在军事领域,多传感器信息融合技术被广泛应用于目标探测、识别和追踪等方面,可以提高军事作战的效能和保障国家安全。
四、多传感器信息融合技术的发展趋势1. 传感器融合技术的发展随着传感器技术的不断发展和进步,传感器信息融合技术也在不断演进,新的传感器类型和融合算法不断涌现。
多传感器信息融合技术研究多传感器信息融合技术(Multi-sensor Information Fusion Technology)是一种通过整合多种传感器信息来获得更好结果的技术。
多传感器信息融合技术能够有效地解决单一传感器无法完成的任务,例如环境感知、目标检测和定位等。
本文将讨论多传感器信息融合技术的概念、应用、挑战和未来发展方向。
一、多传感器信息融合技术的概念多传感器信息融合技术是指通过整合多种类型的传感器信息,以及运用人工智能和机器学习算法等技术,将信息转换为更精确的数据和知识。
多传感器信息融合技术能够将多种数据源(如可见光、红外、声音、气体、温度等)的信息相结合,以获取丰富的信息和更完整的数据。
通过多传感器信息融合技术,可以提高传感器的工作效率和准确性。
二、多传感器信息融合技术的应用1.智能交通:多传感器信息融合技术已经在智能交通领域得到了广泛应用。
通过整合多种类型的传感器(如雷达、视频、红外、微波、光学等),交通系统可以实时监测交通流量、车辆速度和事故等情况,并实现智能化的交通管制。
2.工业生产:在工业生产中,多传感器信息融合技术可以帮助企业检测设备故障、监测生产过程和优化生产效率。
通过整合不同类型传感器的信息,可以更精确地实现设备状态监测和故障诊断。
3.智能家居:多传感器信息融合技术可以帮助智能家居系统实现个性化的家居控制。
例如,通过整合温度、湿度、光线等传感器的信息,系统可以自动地调整室内温度和照明等环境,提供更舒适和安全的家庭环境。
三、多传感器信息融合技术的挑战多传感器信息融合技术的应用还面临一些挑战。
首先,不同类型传感器所采集的信息不一定匹配,因此需要对传感器信息进行标准化处理。
其次,传感器之间可能存在互相影响的情况,例如传感器之间的干扰或协作。
最后,多传感器信息融合技术需要用复杂的算法实现数据的整合和分析,算法的复杂度和计算量也需要考虑。
四、多传感器信息融合技术的未来发展方向未来多传感器信息融合技术的发展趋势将更加注重智能化和自主化。
多传感器数据融合技术研究与应用一、引言多传感器数据融合技术是当今智能化、自动化领域中一个热点话题。
其作为一种有效的信息处理方式,主要是将不同传感器采集到的数据进行合理的整合和处理,以获得更加精准、全面的信息,用于更好地服务于实际生产和实践应用。
二、多传感器数据融合技术原理传感器是指可以将非电信号(如温度、声音、光线等)转化为电信号的一种设备。
但是不同传感器采集到的数据质量不同,精度不同。
因此,多传感器数据融合技术的实质是将多个传感器数据合并到一个数据流中,获得更加精准和完整的信息。
多传感器数据融合技术的主要内容包括数据预处理、特征提取、模型构建、数据融合和结果评估等环节。
1. 数据预处理数据预处理是实现多传感器数据融合的重要前置环节,它主要解决的问题是对数据进行清洗、分段、归一化等操作,从而为后续的数据处理提供优质的数据基础。
2. 特征提取特征提取是将原始数据转化成为特征向量的过程。
在这个过程中,需要选取合适的特征提取算法,用于提取并提取对于模型训练有帮助的特征,通过特征提取,将能够提高数据集的精度和效率。
3. 模型构建模型构建环节是将原始数据转化为可操作的统计模型。
该步骤主要采用机器学习(machine learning)或神经网络算法(neural networks)来进行。
通过机器学习,将能够从海量、复杂的数据中提取模式,解析规律,进行数据分类和预测。
4. 数据融合数据融合是将多个传感器数据融合在一起,并采用特定的融合算法对其进行统一处理的过程。
该步骤可以对数据进行滤波、校正、补偿、预测等,从而提高数据质量。
5. 结果评估结果评估环节可以对模型效果进行评估和监测,同时对数据的处理过程和效果进行反馈。
常用的方法包括召回率(recall)、准确率(precision)、F1值等。
三、多传感器数据融合技术应用场景在实际应用场景中,多传感器数据融合技术已经被广泛应用:1. 电力行业在电力行业中,多传感器数据融合技术可以将无线传感器数据、智能电表数据、监控视频数据等多种数据整合在一起,实现房屋能源消耗监控、电网异常诊断等功能。
多传感器信息融合及应用
多传感器信息融合是指将多个不同类型的传感器所采集的数据
进行有效的组合和处理,以提高信息的质量和可靠性。
这种技术在各种领域得到广泛应用,包括智能交通、环境监测、医疗诊断、机器人控制等等。
多传感器信息融合的基本思想是将多个传感器的数据相互协调,利用它们的互补性来提高整体系统的性能和效率。
这种技术的应用需要深入研究数据融合算法、模型建立和优化算法等方面,同时需要考虑传感器网络的部署、数据传输和存储等方面的问题。
在智能交通领域,多传感器信息融合可以应用于交通流量监测、车辆跟踪、交通事故预警等方面。
在环境监测领域,多传感器信息融合可以应用于大气污染监测、水质监测、土壤监测等方面。
在医疗诊断领域,多传感器信息融合可以应用于医疗图像处理、生理参数监测等方面。
在机器人控制领域,多传感器信息融合可以应用于机器人定位和导航、机器人视觉识别等方面。
总之,多传感器信息融合技术的应用范围广泛,将会在未来的各种领域得到进一步的发展和应用。
- 1 -。
多传感器数据融合技术及其应用摘要:多传感器数据融合技术是一门新兴前沿技术。
近年来,多传感器数据融合技术已受到广泛关注,它的理论和方法已被应用到许多研究领域。
主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。
关键词:多传感器;数据融合;融合方法;复杂工业控制0 引言多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。
多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。
近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。
多传感器融合技术已成为军事、工业和高技术开发等多方面关心的问题。
这一技术广泛应用于C3I(command,control,communication and intelligence)系统、复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、遥感、医疗诊断、图像处理、模式识别等领域。
实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。
1 基本概念及融合原理1.1 多传感器数据融合概念数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。
随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。
多传感器数据融合技术的理论及应用张宁110101256摘要:多传感器数据融合技术是一门新兴前沿技术。
近年来,多传感器数据融合技术已经受到广泛关注,它的理论和方法已经被应用到许多研究领域。
本文主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。
关键词:多传感器;数据融合;融合方法1引言多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。
多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。
近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。
多传感器数据融合技术已成为军事、工业和高技术开发等多方面关心的问题。
这一技术广泛应用于复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、医疗诊断、模式识别等领域。
实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。
2基本概念及融合原理2.1多传感器数据融合概念数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。
随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。
2.2多传感器数据融合原理多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间和时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。
具体的说,多传感器数据融合原理如如下:(1)N个不同类型的传感器(有源或无源的)收集观测目标的数据;(2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;(3)对特征矢量Yi进行模式识别处理,完成各传感器关于目标的说明;(4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;(5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。
3多传感器数据融合方法利用多个传感器所获取的关于对象和环境全面、完整的信息,主要体现在融合算法上。
因此,多传感器系统的核心问题是选择合适的融合算法。
对于多传感器系统来说,信息具有多样性和复杂性,因此,对信息融合方法的基本要求是具有鲁棒性和并行处理能力,此外,还有方法的运算速度和精度;与前续预处理系统和后续预处理信息识别系统的接口功能;与不同技术和方法的协调能力;对信息样本的要求等。
一般情况下,基于非线性的数学方法,如果它具有容错性、自适应性、联想记忆和并行处理能力,则都可以用来作为融合方法。
多传感器的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、证据推理,产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。
可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。
3.1随机类方法3.1.1加权平均法信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种对数据源进行操作的方法。
3.1.2卡尔曼滤波法卡尔曼滤波法主要用于融合低层次多传感器实时动态冗余数据。
该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据统计。
如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计,卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。
但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如:(1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;(2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没来得及被检测出时,故障会污染整个系统,使可靠性降低。
3.1.3多贝叶斯估计法贝叶斯估计为数据融合提供了一种手段,是融合静环境中多传感器高层信息的常用方法。
它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行融合。
多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分部合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。
3.1.4D-S证据推理方法D-S证据推理是贝叶斯推理的扩充,其3个基本要点是:基本概率赋值函数、信任函数和似然函数。
D-S方法的推理结构是自上而下的,分三级。
第1级为目标合成,其作用是把来自独立传感器的观测结果合称为一个总的输出结果(ID);第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。
这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。
因此,在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。
3.1.5产生式规则产生式规则采用符号表示目标特征和相应传感器信息之间的联系,与每一个规则相联系的置信因子表示它的不确定性程度。
当在同一个逻辑推理过程中,2个或多个规则形成一个联合规则时,可以产生融合。
应用产生式规则进行融合的主要为题是每个规则的置信因子的定义与系统中其他规则的置信因子相关,如果系统中引入新的传感器,需要加入相应的附加规则。
3.2人工智能类方法3.2.1模糊逻辑推理模糊逻辑是多值逻辑,通过指定一个0到1之间的实数表示真实度,相当于隐含算子的前提,允许将多个传感器信息融合过程中的不确定性直接表示在推理过程中。
如果采用某种系统化的方法对融合过程中的不确定性进行推理建模,则可以产生一致性模糊推理。
与概率统计方法相比,逻辑推理存在许多优点,它在一定程度上克服了概率论所面临的问题,它对信息的表示和处理更加接近人类的思维方式,它一般比较适合于在高层次上的应用(如决策),但是,逻辑推理本身还不够成熟和系统化,此外,由于逻辑推理对信息的描述存在很大的主观因素,所以,信息的表示和处理缺乏客观性。
模糊集合理论对于数据融合的实际价值在于它外延到模糊逻辑,模糊逻辑是一种多值逻辑,隶属度可视为一个数据真值的不精确表示。
在MSF过程中,存在的不确定性可以直接用模糊逻辑表示,然后,使用多值逻辑推理,根据模糊集合理论的各种演算对各种命题进行合并,进而实现数据融合。
3.2.2人工神经网络法神经网络具有很强的容错性以及自学习、自组织及自适应能力,能够模拟复杂的非线性映射。
神经网络的这些特性和强大的非线性处理能力,恰好满足了多传感器数据融合技术处理的要求。
在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。
神经网络根据当前系统所接受的样本相似性确定分类标准,这种确定方法主要表现在网络的权值分布上,同时,可以采用神经网络特定的学习算法来获取知识,得到不确定性推理机制。
利用神经网络的信号处理能力和自动推理功能,即实现了多传感器数据融合。
4应用领域随着多传感器数据融合技术的发展,应用的领域也在不断扩大,多传感器融合技术已成功地应用于众多的研究领域。
多传感器数据融合作为一种可消除系统的不确定因素、提供准确的观测结果和综合信息的智能化数据处理技术,已在军事、工业控制、智能检测、机器人、图像分析、目标检测与跟踪、自动识别等领域获得普遍关注和广泛应用。
(1)军事应用数据融合技术起源于军事领域,数据融合在军事上应用最早、范围最广,涉及战术或战略上的检测、指挥、控制、通信和情报任务的各个方面。
主要的应用是进行目标的探测、跟踪和识别,包括C31系统、自动识别武器、自主式运载制导、遥感、战场监视和自动威胁识别系统等。
(2)复杂工业过程控制复杂工业控过程控制是数据融合应用的一个重要领域。
目前,数据融合技术已在核反应堆和石油平台监视等系统中得到应用。
融合的目的是识别引起系统状态超出正常运行范围的故障条件,并据此触发若干报警器。
通过时间序列分析、频率分析、小波分析,从各传感器获取的信号模式中提取出特征数据,同时,将所提取的特征数据输入神经网络模式识别器,神经网络模式识别器进行特征级数据融合,以识别出系统的特征数据,并输入到模糊专家系统进行决策及融合;专家系统推理时,从知识库和数据库中取出领域知识规则和参数,与特征数据进行匹配(融合);最后,决策出被测系统的运行状态、设备工作状况和故障等。
(3)机器人多传感器数据融合技术的另一个典型应用领域为机器人。
目前,主要应用在移动机器人和遥操作机器人上,因为这些机器人工作在动态、不确定与非结构化的环境中,这些高度不确定的环境要求机器人具有高度的自治能力和对环境的感知能力,而多传感器数据融合技术正是提高机器人系统感知能力的有效方法。
目前,机器人学界提出向非结构化环境进军,其核心的关键之一就是多传感器系统和数据融合。
(4)遥感多传感器融合在遥感领域中的应用,主要是通过高空间分辨力全色图像和低光谱分辨力图像的融合,得到高空间分辨力和高光谱分辨力的图像,融合多波段和多时段的遥感图像来提高分类的准确性。
(5)交通管理系统数据融合技术可应用于地面车辆定位、车辆跟踪、车辆导航以及空中交通管制系统等。
(6)全局监视监视较大范围内的人和事物的运动和状态,需要运用数据融合技术。
例如:根据各种医疗传感器、病例、病史、气候、季节等观测信息,实现对病人的自动监护;从空中和地面传感器监视庄稼生长情况,进行产量预测;根据卫星云图、气流、温度、压力等观测信息,实现天气预报。
5存在问题及发展趋势数据融合技术方兴未艾,几乎一切信息处理方法都可应用于数据融合系统。