自感现象知识点与习题
- 格式:doc
- 大小:121.00 KB
- 文档页数:3
专题11.3电磁感应现象中的自感现象一、自感现象的分析思路1.明确通过自感线圈的电流的变化情况(增大还是减小)。
2.判断自感电动势方向,电流增强时(如通电时),自感电动势方向与电流方向相反;电流减小时(如断电时),自感电动势方向与电流方向相同。
3.分析线圈中电流变化情况,电流增强时(如通电时),由于自感电动势方向与原电流方向相反,阻碍增加,电流逐渐增大;电流减小时(如断电时),由于自感电动势方向与原电流方向相同,阻碍减小,线圈中电流方向不变,电流逐渐减小。
4.明确电路中元件与自感线圈的连接方式,若元件与自感线圈串联,元件中的电流与线圈中电流有相同的变化规律;若元件与自感线圈并联,元件上的电压与线圈上的电压有相同的变化规律;若元件与自感线圈构成临时回路,元件成为自感线圈的临时外电路,元件中的电流大小与线圈中电流大小有相同的变化规律。
5.分析阻碍的结果,具体见下表二、对通电自感和断电自感的理解在处理通断电自感灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗,要具体问题具体分析,关键要搞清楚电路连接情况。
断电前,灯泡电流I1取决于灯泡上的电压和灯泡自身电阻,断电后,灯泡电流取决于线圈中的电流,若线圈中电流断电前为I2,断电后逐渐减小,灯泡中电流也由I2逐渐减小。
所以,若I2≤I1,灯泡中电流由I2逐渐减小,灯泡逐渐变暗;若I2>I1,灯泡中电流先增大后减小,灯泡先亮一下后逐渐变暗。
【名师点睛】1.电流减小时,自感线圈中电流大小一定小于原先所通电流大小,自感电动势可能大于原电源电动势。
2. 在电路断开时,自感线圈的自感电动势阻碍原电流的减小,此时自感线圈在电路中相当于一个电源,表现为两个方面:一是自感电动势所对应的电流方向与原电流方向一致;二是在断电瞬间,自感电动势所对应的电流大小与原电流的大小相等,以后在此电流基础上开始缓慢减小到零。
关于自感的本质,可以理解为自感的结果使线圈中电流的变化延缓。
专题47、自感现象 图像问题考点一 自感现象的理解1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔI Δt. (3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小. 线圈就相当于电源,它提供的电流从原来的I L 逐渐变小.3.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.4.断电自感中,灯泡是否闪亮问题(1)通过灯泡的自感电流大于原电流时,灯泡闪亮.(2)通过灯泡的自感电流小于或等于原电流时,灯泡不会闪亮.5.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大,断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.例题1.如图8所示的电路中,L 为一个自感系数很大、直流电阻不计的线圈,D 1、D 2是两个完全相同的灯泡,E 是一内阻不计的电源.t =0时刻,闭合开关S ,经过一段时间后,电路达到稳定,t 1时刻断开开关S.I 1、I 2分别表示通过灯泡D 1和D 2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I 随时间t 变化关系的是( AC )解析当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1先变亮再慢慢熄灭,电流反向;综上所述选项A、C正确.例题2.如图10所示,线圈L的自感系数很大,且其直流电阻可以忽略不计,L1、L2是两个完全相同的小灯泡,开关S闭合和断开的过程中,灯L1、L2的亮度变化情况是(灯丝不会断)(D)图10A.S闭合,L1亮度不变,L2亮度逐渐变亮,最后两灯一样亮;S断开,L2立即熄灭,L1逐渐变暗B.S闭合,L1亮度不变,L2很亮;S断开,L1、L2立即熄灭C.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2亮度不变;S断开,L2立即熄灭,L1亮一下再熄灭D.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮;S断开,L2立即熄灭,L1亮一下再熄灭练习1-1:如图9(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯泡A的电阻,接通S,电路达到稳定后,灯泡A发光,则(AD)图9A.在电路(a)中,断开S,A将渐渐变暗B.在电路(a)中,断开S,A将先变得更亮,然后渐渐变暗C.在电路(b)中,断开S,A将渐渐变暗D.在电路(b)中,断开S,A将先变得更亮,然后渐渐变暗解析在电路(a)中,灯A和线圈L串联,它们的电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,流过灯A的电流逐渐减小,因而灯A渐渐变暗.在电路(b)中,电阻R和灯A串联,灯A的电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S后,电源不再给灯供电,而线圈产生自感电动势阻碍电流的减小,通过电阻R、灯泡A形成回路,灯泡A中电流突然变大,灯泡A先变得更亮,然后渐渐变暗,故A、D正确.练习1-2:如图7所示,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈(直流电阻可忽略不计).则(A)图7A.S闭合时,A灯立即亮,然后逐渐熄灭B.S闭合时,B灯立即亮,然后逐渐熄灭C.电路接通稳定后,三个灯亮度相同D.电路接通稳定后,S断开时,C灯立即熄灭解析因线圈L的自感系数较大且直流电阻可忽略不计,S闭合时,A灯立即亮,然后逐渐熄灭,A正确.S 闭合时,B灯先不太亮,然后变亮,B错误.电路接通稳定后,B、C灯亮度相同,A灯不亮,C错误.电路接通稳定后,S断开时,C灯逐渐熄灭,D错误.练习1-3:如图9所示,电路中A和B是两个完全相同的小灯泡,L是一个自感系数很大、直流电阻为零的电感线圈,C是电容很大的电容器.当S闭合与断开时,对A、B的发光情况判断正确的是(AC)图9A.S闭合时,A立即亮,然后逐渐熄灭B.S闭合时,B立即亮,然后逐渐熄灭C.S闭合足够长时间后,B发光而A不发光D.S闭合足够长时间后再断开,B立即熄灭而A逐渐熄灭解析电容器的特性是“充电和放电”,在开始充电阶段,相当于阻值很小的电阻,放电阶段相当于电源.电感线圈的特性是“阻交流、通直流”,即电流不会突然变化,当电流突然增大时,相当于阻值很大的电阻,当电流突然减小时,相当于电源.因此,当开关刚闭合时,电容器对电流的阻碍作用小,线圈对电流的阻碍作用大,C和B组成的电路分压作用小,A、L组成的电路分压作用大,B灯很暗,A灯很亮.当开关闭合足够长的时间后,电容器充电完成,线圈中电流为直流电,而其直流电阻很小,B灯较亮,A灯被短路,不发光;开关断开瞬间,电容器和B组成的回路中,电容器放电,B灯逐渐变暗,A灯和线圈组成的回路中,线圈充当电源,A灯先变亮再熄灭,故选项A、C正确.练习1-4:如图5所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用I1、I2表示流过D1和D2的电流,则下列四个图象中能定性描述电流I1、I2随时间t变化关系的是(C)解析在闭合开关S时,流过D2的电流立即增大到稳定值I2′,流过D1的电流由于线圈的自感作用并不能立即增大,而是缓慢地增大到I1′,且I1′=2I2′,在断开开关S时,线圈中产生自感电动势,D1、D2和D3组成回路,回路中有逆时针方向的电流,且电流从I1′逐渐减小,最后减为零,所以选项C正确.练习1-5:如图所示的电路中,S闭合时流过电感线圈的电流是2 A,流过灯泡的电流是1 A,将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )练习1-6:在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I,然后断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图像是(B)考点二电磁感应中的图象问题1.图象类型(1)电磁感应中常涉及磁感应强度B、磁通量、感应电动势和感应电流I等随时间变化的图线,即B—t图线、φ—t图线、E—t图线和I—t图线。
高二物理自感日光灯原理【本讲主要内容】自感日光灯原理【知识掌握】【知识点精析】本讲的重点、难点是知道普通日光灯的组成和电路图,知道日光灯管在点亮和正常发光时对电压和电流的不同要求,知道起动器和镇流器的构造和工作原理。
1、自感现象演示1:通电自感现象。
观察指导:稳态效果;“过程”区别。
演示2:断电自感现象。
观察指导:稳态亮度和断开“过程”亮度的差异。
启发:这种现象是怎么形成呢? 配合下图分析因为这种电磁感应是在自身回路形成的,所以称为“自感”。
(1)自感现象:由于导体本身电流的变化而产生的电磁感应现象叫自感现象。
刚才已经分析到了,自感现象的形成是因为有自感电流和原电流的叠加,而出现自感电流是因为有自感电动势。
(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。
自感电动势的作用是在闭合回路中形成自感电流。
和互感一样,自感只是电磁感应的一种特殊表现形式,因此,它的大小和方向规律仍然遵从楞次定律和法拉第电磁感应定律。
将法拉第电磁感应定律应用到自感的研究时,人们发现,自感电动势会形成一种特殊的表达形式,那就是——自感电动势和电流变化率成正比。
意义解释过渡:普通意义上的感应电动势和磁通变化率成正比,比例系数是什么? 自感电动势和电流变化率成正比,其比例系数又怎样呢? 2、自感系数物理学家的研究表明,这个比例系数并不是和回路匝数无关,也并不是只和回路的匝数有关,我们把它称为——自感系数:ε感= LtI∆∆中的L 称为自感系数。
而且,影响自感系数的因素除了线圈匝数外,还有,线圈的长度、线圈的横截面积。
N 越大、S 越大、l 越大,则L 越大。
我们为什么要研究自感现象呢? 自感的利弊阐释如果我们供电的电源变成交流——即大小和方向不停地随时间变化的电流,自感线圈的作用又会怎样?3、日光灯电路(和白炽灯比较)日光灯的优点(光线柔和,发光效率比白炽电灯高,其温度约在40~50℃,所耗的电功率仅为同样明亮程度的白炽灯之1/3~1/5。
自感现象一、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。
要点二:自感电流总是阻碍导体中原电流的变化,当自感电流是由于原电流的增强引起的(如通电),自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时(如断电),自感电流的方向与原电流方向相同; 要点三:自感电动势的大小取决于自感系数和导体本身电流变化的快慢。
其具体关系为:E L t =/∆I ∆。
其中,自感系数L 的大小是由线圈本身的特性决定的。
线圈越粗、越长、匝数越密,它的自感系数就越大;线圈中加入铁芯,自感系数增大。
要点四:自感现象的解释。
图1的电路断电时,线圈中产生的自右向左的自感电流,是从稳定时的电流I L 开始减小的。
若R R R A L L >(为线圈的直流电阻),在电键S 闭合稳定后,流过电灯的自右向左的电流I A 小于流过线圈的自右向左的电流I L ,在S 断开的瞬间,才可以看到电灯更亮一下后才熄灭。
若R R A L ≤,在S 断开的瞬间,电灯亮度是逐渐减弱的。
三个状态:理想线圈(无直流电阻的线圈)的三个状态分别是指线圈通电瞬间、通电稳定状态和断电瞬间状态。
在通电开始瞬间应把线圈看成断开,通电稳定时可把理想线圈看成导线或被短路来分析问题。
断电时线圈可视为一瞬间电流源(自感电动势源),它可以使闭合电路产生电流。
二、自感现象题型及其分析1. 判断灯亮度情况的变化问题例1如图2所示的电路中A A 12和是完全相同的灯泡,线圈L 的电阻可以忽略。
下列说法中正确的是( )A. 合上电键S 接通电路时,A 2先亮,A 1后亮,最后一样亮B. 合上电键S 接通电路时,A A 21和始终一样亮C. 断开电键S 切断电路时,A 2立即熄灭,A 1过一会才熄灭D. 断开电键S 切断电路时,A A 21和都过一会才熄灭2. 自感中的电流计算问题例2 如图所示,电源电动势E=6V,内阻不计,A和B两灯都标有“6V均为20 ,试通过计算,分析在0.3A”字样,电阻R和线圈L的直流电阻RL电键S闭合和断开的极短时间内流过A和B两灯的电流变化情况。
高中物理自感练习题及讲解高中物理自感现象练习题一、选择题1. 某线圈的自感系数为L,当线圈中的电流以恒定速率减少时,线圈两端的感应电动势大小为:- A. 0- B. 与电流成正比- C. 与电流变化的速率成正比- D. 与电流平方成正比2. 当线圈中的电流均匀增大时,线圈中产生的自感电动势的方向是: - A. 与原电流方向相同- B. 与原电流方向相反- C. 无法确定- D. 以上都不对二、填空题1. 自感现象是指__________,其产生的电动势称为__________。
2. 自感系数L的大小与线圈的几何形状、绕制方式、是否有铁芯等因素有关。
一般情况下,线圈越长、单位长度上匝数越多,自感系数__________(填“越大”或“越小”)。
三、计算题1. 已知某线圈的自感系数为0.5H,当线圈中电流以2A/s的速率均匀减小时,求线圈两端的感应电动势。
2. 某线圈的自感系数为1.0H,线圈中的电流从0开始以均匀速率增加到2A,求电流达到2A时线圈中的自感电动势。
四、简答题1. 简述自感现象产生的原因,并说明自感电动势的方向如何确定。
2. 为什么说自感现象在电路中可以起到保护作用?自感现象练习题答案及讲解一、选择题1. 正确答案:C。
解析:自感电动势的大小与电流变化的速率成正比,这是法拉第电磁感应定律的体现。
2. 正确答案:B。
解析:自感电动势的方向总是试图抵抗电流的变化,因此它与原电流方向相反。
二、填空题1. 答案:线圈中的电流变化时产生的电磁感应现象;自感电动势。
解析:自感现象是电磁感应的一种,当线圈中的电流发生变化时,会在该线圈自身产生感应电动势。
2. 答案:越大。
解析:自感系数L与线圈的几何形状有关,线圈越长,单位长度上匝数越多,自感系数越大。
三、计算题1. 解:根据公式E = L * (ΔI/Δt),其中E是感应电动势,L是自感系数,ΔI是电流变化量,Δt是时间变化量。
代入数值:E = 0.5H * (2A/s) = 1V。
自感〔练习题〕作业导航:1.知道什么是自感现象和自感电动势.2.知道自感系数是表示线圈本身特征的物理量,知道它的单位.3.知道自感现象的利和弊以及对它们的利用和防止.一、选择题(每题4分,共32分)1.一个线圈的电流在均匀增大,那么这个线圈的〔〕A.自感系数也将均匀增大B.自感电动势也将均匀增大C.磁通量的变化率也将均匀增大D.自感系数、自感电动势都不变2.以下哪些单位关系是不正确的〔〕A.1 亨=1 欧·秒B.1 亨=1 伏·安/秒C.1 伏=1 韦/秒D.1 伏=1 亨·安/秒3.关于自感电动势的方向,正确的说法是〔〕A.它总是同原电流方向相同B.它总是同原电流方向相反C.当原电流增大时,它与原电流方向相同D.当原电流减小时,它与原电流方向相同4.如图16-66所示,当闭合S和断开S的瞬间能观察到的现象分别是〔〕图16-66A.小灯泡慢慢亮;小灯泡立即熄灭B.小灯泡立即亮;小灯泡立即熄灭C.小灯泡慢慢亮;小灯泡比原来更亮一下再慢慢熄灭D.小灯泡立即亮;小灯泡比原来更亮一下再慢慢熄灭5.如图16-67所示,电路中A、B是完全相同的灯泡,L是电阻不计的电感线圈,以下说法中正确的选项是〔〕图16-67A.当开关S闭合时,A灯先亮,B灯后亮B.当开关S闭合时,A、B灯同时亮,以后B灯更亮,A灯熄灭C.当开关S闭合时,B灯先亮,A灯后亮D.当开关S闭合时,A、B灯同时亮,以后亮度不变6.如图16-68电路(甲)、(乙)中,电阻R和自感线圈L的电阻都很小.接通S,使电路到达稳定,灯泡A发光,那么〔〕①在电路(甲)中,断开S,A将渐渐变暗②在电路(甲)中,断开S,A将先变得更亮,然后渐渐变暗③在电路(乙)中,断开S,A将渐渐变暗④在电路(乙)中,断开S,A将先变得更亮,然后渐渐变暗图16-68A.①③B.①④C.②③D.②④7.如图16-69所示的电路中,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略.以下说法中正确的选项是〔〕图16-69①合上开关S接通电路时,A2先亮,A1后亮,最后一样亮②合上开关S接通电路时,A1和A2始终一样亮③断开开关S切断电路时,A2立刻熄灭,A1过一会儿才熄灭④断开开关S切断电路时,A1和A2都要过一会儿才熄灭A.①③B.①④C.②③D.②④8.图16-70中,L为电阻很小的线圈,G1和G2为内阻不计、零点在表盘中央的电流计.当开关S 处于闭合状态时,两表的指针皆偏向右方.那么,当开关S断开时,将出现下面哪种现象〔〕图16-70A.G1和G2的指针都立即回到零点B.G1的指针立即回到零点,而G2的指针缓慢地回到零点C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点D.G1的指针先立即偏向左方,然后缓慢地回到零点,而G2的指针缓慢地回到零点二、非选择题(共28分)9.(4分)在国际单位制中,磁通量的单位是__________,磁感应强度的单位是______________,自感系数的单位是______________.10.(5分)如图16-71所示的电路,L为自感线圈,R是一个灯泡,E是电源,当S闭合瞬间,通过电灯的电流方向是__________.当S切断瞬间,通过电灯的电流方向是__________.图16-7111.(5分)演示自感现象的实验电路图如图16-72所示,L 是电感线圈,A1、A2是规格相同的灯泡,R 的阻值与L 的直流电阻值相同.当开关S 由断开到合上时,观察到的自感现象是__________,最后到达同样亮.图16-7212.(7分)固定在匀强磁场中的正方形导线框abcd ,各边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感强度为B ,方向垂直纸面向里,现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,如图16-73所示,以恒定的速度v 从ad 滑向bc ,当PQ 滑过31l 的距离时,通过aP 段电阻丝的电流是多大?方向如何?图16-7313.(7分)图16-74中,位于竖直平面内的矩形平面导线框abdc ,水平边ab 长L1=1.0 m ,竖直边bd 长L2=0.5 m ,线框的质量m =0.2 kg ,电阻R =2 Ω,其下方有一匀强磁场区域,该区域的上、下边界PP ′和QQ ′均与ab 平行,两边界间距离为H ,H >L2,磁场的磁感强度B =1.0 T ,方向与线框平面垂直,如下图,令线框的dc边从离磁场区域上边界PP′的距离为h=0.7 m处自由下落,线框的dc边进入磁场以后,ab 边到达边界PP′之前的某一时刻线框的速度已到达这一阶段的最大值,问从线框开始下落到dc边刚刚到达磁场区域下边界QQ′过程中,磁场作用于线框的安培力做的总功为多少?(g=10 m/s2,不计空气阻力)图16-74参考答案一、选择题(每题4分,共32分)1.解析:自感系数是线圈本身特征的物理量,不随电流而变;电流均匀变化,那么磁通量的变化率和自感电动势均不变.故D选项正确.答案:D2.答案:B3.解析:自感电动势总是阻碍原电流的变化.故D选项正确.答案:D4.A5.B6.解析:此题考查同学们对断电时产生的自感电动势的阻碍作用的理解.在电路断开时,电感线圈的自感电动势阻碍原电流的减小,此时电感线圈在电路中相当于一个电源,表现为两个方面:一是自感电动势所对应的电流方向与原电流方向一致;二是在断电瞬间,自感电动势所对应的电流大小与原电流的大小相等,以后以此电流开始缓慢减小到零.(甲)图中,电灯A与电感线圈L在同一个支路中,流过的电流相同;断开电键S时,线圈L中的自感电动势要维持原电流不变,所以,电键断开的瞬间,电灯A的电流不变,以后电流渐渐变小.因此电灯渐渐变暗.(乙)图中,电灯A所在支路的电流比电感线圈所在支路的电流要小(因为电感线圈的电阻很小),断开电键S时,电感线圈的自感电动势要阻碍电流的变小,此瞬间电感线圈中的电流不变,电感线圈相当于一个电源给灯A供电.因此,反向流过A的电流瞬间要变大,然后渐渐变小,所以电灯要先亮一下,然后渐渐变暗.故B选项正确.答案:B7.解析:此题考查了对通电自感和断电自感现象的理解,以及纯电感线圈在电流稳定时相当于一根短路导线.通电瞬间,L中有自感电动势产生,与L在同一支路的灯A1要逐渐变亮,而A2和电源构成回路那么立即亮;稳定后,A1与A2并联,两灯一样亮.断开电键瞬间,L中有自感电动势,相当于电源,与A1、A2构成回路,所以两灯都过一会儿才熄灭.故B选项正确.答案:B8.解析:S断开后,自感电流的方向与G2原电流方向相同,与G1原电流方向相反.故D选项正确.答案:D二、非选择题(共28分)9.Wb,T,H.10.解析:当S闭合时,流经R的电流是A→B.当S切断瞬间,由于电源提供应R及线圈的电流立即消失,因此线圈要产生一个和原电流方向相同的自感电动势来阻碍原电流减小,所以电流流经R时的方向是B→A.答案:A→B,B→A说明:分析自感现象时,关键是搞清原电流的方向及产生的自感电动势的作用.11.解析:A2支路是纯电阻电路,S接通,电流立即通过.A1支路的电感线圈L对电流的变化起较强阻碍作用,当电路稳定后,自感的阻碍作用消失,所以A1逐渐亮,最后两灯同样亮.答案:A2立即亮,A1逐渐亮(或A2先亮,A1后亮)说明:自感现象作为电磁感应定律的应用,在历年物理考题中经常出现.尽管这方面的考题并不难,但极易丢分.解决这类问题的关键是明确感应电流的磁场总是阻碍(而不是阻止)原磁场的变化,所以通电时产生反方向的电流,断电时,为维持原电流,产生同方向电流.12.解析:PQ右移切割磁感线,产生感应电动势,此时外电路由Pa与Pb两局部并联而成.画出等效电路图,由闭合电路欧姆定律即可得解.PQ向右滑动时,切割磁感线产生感应电动势的大小为E=Blv.方向从Q 指向P .因此,可以把PQ 作为电源,其内电阻为R ,滑过31l 时的等效电路如下图. 外电路的总电阻为R 外=R R R RR 9232313231=+⋅. 电路的总电流为 I =R BlvRR Blv R r E11992=+=+外内. 根据并联电路电流分配关系,可求得通过aP 段的电流大小为:IaP =32I =R Blv 116 方向由P 到ad . 答案:RBlv116,方向由P 到ad13.解析:依题意,线框的ab 边到达磁场边界PP ′之前某一时刻线框速度到达这一阶段速度最大值,以v0表示这一最大速度,那么有:在最大速度v0时,E =BL1v0,线框中电流I =Rv BL R E 01=, F 安=BIL1=Rv L B 0122速度达最大值条件:F 安=mg 即Rv L B 0122=mgv0=122L B m gR=4.0 m/s dc 边继续向下运动过程中,直至线框ab 边到达磁场上边界PP ′,线框保持速度v0不变.故从线框自由下落至ab 边进入磁场过程中,由动能定理:mg(h +L2)-W 安=21mv20 W 安=mg(h +L2)-21mv20=[0.2×10×(0.7+0.5)-21×0.2×4.02] J =0.8 Jab 边进入磁场后,直至dc 边到达磁场区域下边界QQ ′过程中,作用于整个线框安培力为零,安培力做功也为零,线框只在重力作用下做加速运动.故线框从开始下落到dc 边刚达磁场区域下边界QQ ′过程中,安培力所做的总功即为线框自由下落至ab 边进入磁场过程中安培力所做的功.W 安=0.8 J ,安培力做负功. 答案:0.8 J ,安培力做负功.。
考点3.3自感现象1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔI Δt. (3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.3.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大,断电过程中,电流是逐渐变小.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来大,则灯泡先闪亮后再慢慢熄灭.4.自感线圈的三个等效作用(1)通电瞬间,自感线圈相当于大电阻.(2)断电瞬间,自感线圈相当于电源.(3)电流稳定时,自感线圈相当于电阻.1. (多选)下列说法正确的是( AC )A . 当线圈中电流不变时,线圈中没有自感电动势B . 当线圈中电流反向时.线圈中自感电动势的方向与线圈中原电流的方向相反C . 当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D . 当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反2.关于线圈的自感系数、自感电动势的下列说法正确的是( C )A .线圈中电流变化越大,线圈自感系数越大B .对于某一线圈,自感电动势正比于电流的变化量C .一个线圈的电流均匀增大,这个线圈自感系数、自感电动势都不变D .自感电动势与原电流方向相反3. 如图所示,电路中电源内阻不能忽略,电阻R 的阻值和线圈L 的自感系数都很大,A 、B 为两个完全相同的灯泡,当S 闭合时,下列说法正确的是( B )A.A比B先亮,然后A灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A灭D.A、B一起亮,然后B灭4.如图所示的电路,可用来测定自感系数较大的线圈的直流电阻,线圈两端并联一个电压表,用来测量自感线圈两端的直流电压,在实验完毕后,将电路拆开时应( B )A.先断开开关S1B.先断开开关S2C.先拆去电流表D.先拆去电阻R5.(多选)如图所示的电路中,L是自感系数很大的线圈,但其自身的电阻可看作为零.A、B是两个相同的灯泡,下列说法中正确的是( BD )A.开关S由断开变为闭合,A、B同时发光,之后亮度不变B.开关S由断开变为闭合,A立即发光,之后又逐渐熄灭C.开关S由闭合变为断开的瞬间,A、B同时熄灭D.开关S由闭合变为断开的瞬间,A再次发光,之后又逐渐熄灭6.如图所示,多匝线圈L的电阻和电池内阻不计,两个电阻的阻值都是R,开关S原来是断开的,电流I0=E2R,今合上开关S将一电阻短路,于是线圈有自感电动势产生,这电动势( D )A.有阻碍电流的作用,最后电流由I0减小到零B.有阻碍电流的作用,最后电流总小于I0C.有阻碍电流增大的作用,因而电流将保持I0不变D.有阻碍电流增大的作用,但电流最后还是增大到2I07.如图(a)、(b)中,电阻R和自感线圈L的电阻值相等,接通开关S,使电路达到稳定状态,灯泡D发光,则下列说法正确的是( D )①在电路(a)中,断开S,D将渐渐变暗②在电路(a)中,断开S,D将先变得更亮,然后渐渐变暗③在电路(b)中,断开S,D将渐渐变暗④在电路(b)中,断开S,D将先变得更亮,然后渐渐变暗A.①③B.②③C.②④D.①④8.如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是( B )A.9.在制造精密电阻时,为消除电阻使用过程中由于电流变化而引起的自感现象,采取了双线绕法,如图所示,其道理是( C )A.当电路中电流变化时,两股导线中产生的自感电动势互相抵消B.当电路中电流变化时,两股导线中产生的感应电流互相抵消C.当电路中电流变化时,两股导线中产生的磁通量互相抵消D.以上说法均不正确10.如图所示,L A和L B是两个相同的小灯泡,L是一个自感系数相当大的线圈,其电阻值与R相同.由于存在自感现象,在开关S闭合和断开时,灯L A和L B先后亮暗的顺序是( A )A.闭合时,L A先达最亮;断开时,L A后暗B.闭合时,L B先达最亮;断开时,L B后暗C.闭合时,L A先达最亮;断开时,L A先暗D.闭合时,L B先达最亮;断开时,L B先暗11.(多选)如图5所示是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合开关S,调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开开关S,再重新闭合开关S,则( BC )A.闭合瞬间,A1立刻变亮,A2逐渐变亮B.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差不相同12.如图中,L为电阻很小的线圈,G1和G2为内阻不计,零点在表盘中央的电流计.当开关S处于闭合状态时,两表的指针皆偏向右方.那么,当开关S断开时( D )A.G1和G2的指针都立即回到零点B.G1的指针立即回到零点,而G2的指针缓慢地回到零点C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点D.G1的指针立即偏向左方,然后缓慢地回到零点,而G2的指针缓慢地回到零点。
第1页(共22页)2023年高考物理热点复习:法拉第电磁感应定律
自感现象【2023高考课标解读】
1.能应用法拉第电磁感应定律E =n
ΔΦΔt
和导线切割磁感线产生电动势公式E =Blv 计算感应电动势.2.会判断电动势的方向,即导体两端电势的高低.3.理解自感现象、涡流的概念,能分析通电自感和断电自感.
【2023高考热点解读】
一、法拉第电磁感应定律
1.感应电动势
(1)感应电动势:在电磁感应现象中产生的电动势.
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E =n ΔΦΔt
,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I =E R +r .3.导体切割磁感线时的感应电动势
(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度;
(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动
产生感应电动势E =Bl v -=12Bl 2ω(平均速度等于中点位置的线速度12
lω).二、自感、涡流、电磁阻尼和电磁驱动
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E =L ΔI Δt
.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
2.涡流现象。
自感复习讲义知识点:一、自感现象和自感电动势当导体中电流发生变化时,导体自身产生的电磁感应现象,叫自感现象,在自感现象中产生的电动势叫自感电动势.自感电动势的表达式为:E=LΔIΔt(不要求定量计算),L叫自感系数,自感系数的单位是亨利(H).自感系数由线圈自身条件决定,线圈直径大、长度长、单位长度匝数多,自感系数大;若线圈中有铁芯,自感系数会更大.二、自感现象的一般性和特殊性一般性:自感电动势阻碍磁通量变化.特殊性:阻碍发生自感现象的导体自身电流的变化,即当它所在支路电流增大,自感电动势即与原电流方向相反,反之相同.三、自感现象的应用和防止图12-3-1应用:日光灯电路图:如图12-3-1所示:原理:当开关闭合后,电源电压加在启动器的两极之间,使氖泡发出辉光,产生的热量使U形动触片膨胀,接通电路.此时有电流过镇流器和灯丝,这时启动器停止放电,U形动触片冷却收缩,电路断开,镇流器线圈产生很高的自感电动势,电动势的方向与原电压的方向相同,因而形成一瞬间高压,加在灯管两端,使灯管中的气体放电,从而灯管成为电流通路,使日光灯发光.正常发光后,镇流器起到降压限流的作用,保证日光灯正常工作.图12-3-2防止:定值电阻的双线绕法如图12-3-2所示,双线并绕制成定值电阻器,以排除自感电动势的影响.典型例题分析:分析自感现象时,除了要定性分析通电和断电时的自感现象外,还应半定量地分析电路中的电流变化,分析时主要抓住通过自感线圈的电流不能突变这一特点,其次是注意电路结构在稳定和不稳定时的变化.要明确自感电动势总是阻碍电流的变化.线圈中电流增大时,自感电动势(电流)方向与原电流方向相反,阻碍电流的增大;线圈中电流减小时,自感电动势(电流)方向与原电流方向相同,阻碍电流的减小.正是这种阻碍作用,使线圈中的电流只能从原来的值逐渐变化,不能发生突变.例1.图12-3-3中灯L A、L B完全相同,带铁芯的线圈L的电阻可忽略,则()图12-3-3A.S闭合瞬间,L A、L B同时发光,接着L A变暗,L B变亮B.S闭合瞬间,L A不亮,L B立即亮C.S闭合瞬间,L A、L B都不立即亮D.稳定后再断开S瞬间,L B灯熄灭,L A灯亮并比开始时L B更亮解析:在S闭合瞬间,L支路中的电流从无到有发生“变化”,因此在L中产生自感电动势阻碍电流增加,由于自感系数较大,对电流的阻碍作用强,所以S接通的极短时间内L中电流几乎为零,L并没有起到“短路”作用.L A灯中有电流流过,L A、L B灯同时亮.由于L 中电流从无到有很快稳定,感应电动势消失,上述那种电流的阻碍不存在,它对L A灯的短路作用形成,L A灯熄灭.由于电路电阻变小,L B 便更亮,故A正确.答案:A点评:分析自感现象,关键是分清电流的变化,确定自感电动势的方向及怎样阻碍电流的变化.例2.下列关于自感现象的论述中,正确的是()A.线圈的自感系数跟线圈内电流的变化率成正比B.当导体中电流减小时,自感电流的方向与原电流方向相反C.当导体中电流增大时,自感电流的方向与原电流方向相同D.穿过线圈的磁通量变化和线圈中电流的变化成正比解析:线圈的自感系数是由线圈本身性质决定的,与线圈长度、单位长度的匝数、线圈的横截面积、铁芯……有关,而与线圈内电流无关,A错.自感电流方向总是阻碍线圈中电流的变化,即原电流增大,自感电流与原电流方向相反,线圈中电流减小,自感电流的方向与原电流方向相同,B、C错.根据E=L△I/△t和E=n△Φ/△t比较可知ΔΦ∝ΔI,则D对.答案:D例3.如图12-3-4所示的电路中,A1、A2为完全相同的灯泡,线圈L的电阻忽略不计.下列说法中正确的是( )A.合上开关K接通电路时,A2先亮A1后亮,最后一样亮B.合上开关K接通电路时,A1和A2始终一样亮C.断开开关K切断电路时,A2立即熄灭,A1过一会儿才熄灭D.断开开关K切断电路时,A1、A2同时立即熄灭图12-3-4解析:接通时,由于线圈的自感作用,A1支路相当于断路,电流增大得慢,A1后亮;稳定后,线圈的作用消失,又相当于短路,A1、A2并联,亮度一样;断开开关,都过一会儿才熄灭.答案:A 例4.如图12-3-5所示,多匝线圈L的电阻和电池内阻都忽略不计,两个电阻的阻值都是R,电键S原来打开,电流I0=E/2R,今合上电键将一电阻短路,于是线圈有自感电动势产生,此电动势()图12-3-5A.有阻碍电流的作用,最后电流由I0减到零B.有阻碍电流的作用,最后电流总小于I0C.有阻碍电流增大的作用,因而电流I0保持不变D.有阻碍电流增大的作用,但最后电流还是增大到2I0解析:根据电磁感应定律,自感电动势是阻碍电流增大的,到最终电路达到稳定时电流I=E /R=2I0,D对.答案:D.例5.如图12-3-7所示,L是电感足够大的线圈,其直流电阻可忽略不计,D1和D2是两个相同的灯泡.若将开关S闭合,待灯泡亮度稳定后,再断开开关S,则()图12-3-7A.S闭合时,D2先亮,然后D1再亮B.S闭合时,D1很亮,D2逐渐亮,最后D1和D2一样亮C.S断开时,D2立即熄灭,D1会更亮一下才熄灭D.S断开时,D1立即熄灭,D2会更亮一下再熄灭解析:S闭合时,电路中电流增大,线圈中电流瞬时为零.D1、D2立即亮且一样亮,当电路稳定时,线圈L不再产生自感电动势,将D1短路,D1熄灭,D2变得更亮.当S断开时,D2立即熄灭;线圈产生自感电动势使D1闪一下再熄灭.例6. 如图12-3-8所示电路中,S是闭合的,此时流过L的电流为i1,流过灯A的电流为i2,且i1<i2.在t1时刻将S断开,那么流过灯泡的电流随时间变化的图象是图12-3-9中的…()图12-3-8图12-3-9解析:断开S前,灯中电流的方向向右,断开S后,由于自感现象,灯泡中电流从i1减小至0,方向与原方向相反.答案:D 例7.如图12-3-10所示,A、B、C是三只相同的白炽灯泡,其额定电压稍大于电源的电动势,L是一个自身电阻可忽略不计的电感线圈,E是电源电动势.(电源内阻忽略不计)电键S原来闭合,现在突然断开,若在此过程中灯泡都不会被烧坏,则关于电灯的说法正确的是()图12-3-10A.A灯变亮,B灯变亮,最后A、B灯一样亮B.B灯的亮度始终保持不变C.C灯闪亮一下而后逐渐恢复原来的亮度D.C灯变暗一下而后逐渐恢复原来的亮度解析:开始时线圈将A短路,B、C电压均为电源电压.断开S 时A、B串联,A立即亮,B变暗,线圈中原来电流为B、C原来电流之和;断开瞬间C中电流突然增大,然后逐渐减小到原值.答案:C 例8.如图12-3-11所示的电路,L是自感线圈,R是一个灯泡,以下判断中正确的是…()图12-3-11A.开关S接通和断开的瞬间,电流方向都是a→R→bB.接通S瞬间电流由a→R→b,断开瞬间电流由b→R→aC.S接通瞬间电流由a→R→b,断开瞬间无电流D.S接通瞬间和断开瞬间灯泡中均无电流通过解析:接通时电源对灯泡供电,断开瞬间是线圈对灯泡供电,B 正确.答案:B例9.如图12-3-12所示,电源电动势E=6 V,内阻不计,A、B 两灯都标有“6 V 0.3 A”字样,电阻R和线圈L的直流电阻R L均为20 Ω.试分析在电键S闭合和断开极短时间内流过A和B两灯的电流变化情况.解析:A灯和B灯的电阻为R a=R b=U/I=20 Ω.S刚闭合时,由于L中电流不能突变,只能由零逐渐增大到稳定值,因此L中电流为零,相当于断路,此时A灯与R并联后再与B灯串联,不难算出此时流过A灯和B灯电流分别为I A0=0.1 A和I B0=0.2 A.电路稳定后,A和B 两灯分别与R和L并联后再串联,也不难算出此时流过A、B两灯的电流I A=I B=0.15 A.当S断开时,A灯中电流立即从0.15 A变为零,同时由于发生自感现象,使L中电流不能发生突变,因此B灯电流从向右流过的0.15 A 立即变为向左流过0.15 A,然后逐渐减小为零.例10. 如图12-3-13所示电路中,已知E=20 V ,R 1=20 Ω,R 2=10 Ω,L 是纯电感线圈,电源内阻不计,则S 闭合稳定后打开S 的瞬间,L 两端的电压为多大?哪端电势高?图12-3-13解析:S 闭合时,流过L 的电流I=2R E =1020A=2 A.打开S 瞬间,R 2和R 1与L 串联,开始瞬间,L 中电流应为I ,所以L 两端电压为I (R 1+R 2)=60 V ,经分析可知b 端电势高.(断开后L 为电源,b 为正极)答案:U=60 V b 端电势高例11. 在下列四个日光灯的接线图中,S 为起辉器,L 为镇流器,图12-3-6中正确的是( )图12-3-6解析:日光灯电路的接法是:启动器与灯管并联,镇流器与灯管串联.答案:A 。
高中物理自感互感练习题及讲解### 高中物理自感互感练习题及讲解#### 练习题一:自感现象1. 题目:一个线圈的自感系数为0.5H,当通过它的电流以每秒10A的速率变化时,求线圈中产生的自感电动势。
2. 解答:根据自感电动势公式 \( E = L \frac{ΔI}{Δt} \),代入题目给定的数值:\( L = 0.5H \),\( ΔI = 10A \),\( Δt = 1s \),得到 \( E = 0.5 \times 10 = 5V \)。
#### 练习题二:互感现象1. 题目:两个线圈互相靠近,线圈1的自感系数为0.4H,线圈2的自感系数为0.3H,它们之间的互感系数为0.1H。
当线圈1中的电流从0.1A增加到0.5A时,求线圈2中产生的互感电动势。
2. 解答:首先计算线圈1的电流变化量 \( ΔI_1 = 0.5A - 0.1A = 0.4A \)。
然后根据互感电动势公式 \( E = M \frac{ΔI_1}{Δt} \),其中 \( M \) 是互感系数,\( ΔI_1 \) 是线圈1的电流变化量,\( Δt \) 是时间变化量。
假设电流变化发生在1秒内,\( Δt = 1s \),代入数值得到 \( E = 0.1 \times \frac{0.4}{1} = 0.04V \)。
#### 练习题三:自感和互感的结合1. 题目:一个电路中包含两个线圈,线圈A的自感系数为0.5H,线圈B的自感系数为0.2H,它们之间的互感系数为0.1H。
当线圈A中的电流从0.2A增加到0.8A时,求线圈B中产生的总电动势。
2. 解答:首先计算线圈A的电流变化量 \( ΔI_A = 0.8A - 0.2A = 0.6A \)。
线圈A产生的自感电动势 \( E_A = L_A \frac{ΔI_A}{Δt} \),假设电流变化发生在1秒内,\( Δt = 1s \),则 \( E_A = 0.5 \times \frac{0.6}{1} = 0.3V \)。
自感现象的四个要点和三个状态
一、自感现象的四个要点和三个状态
要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。
要点二:自感电流总是阻碍导体中原电流的变化,当自感电流是由于原电流的增强引起的(如通电),自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时(如断电),自感电流的方向与原电流方向相同;
要点三:自感电动势的大小取决于自感系数和导体本身电流变化的快慢。
其具体关系为:E L t =/∆I ∆。
其中,自感系数L 的大小是由线圈本身的特性决定的。
线圈越粗、越长、匝数越密,它的自感系数就越大;线圈中加入铁芯,自感系数增大。
要点四:自感现象的解释。
图1的电路断电时,线圈中产生的自右向左的自感电流,是从稳定时的电流I L 开始减小的。
若R R R A L L >(为线圈的直流电阻),在电键S 闭合稳定后,流过电灯的自右向左的电流I A 小于流过线圈的自右向左的电流I L ,在S 断开的瞬间,才可以看到电灯更亮一下后才熄灭。
若R R A L ≤,在S 断开的瞬间,电灯亮度是逐渐减弱的。
三个状态:理想线圈(无直流电阻的线圈)的三个状态分别是指线圈通电瞬间、通电稳定状态和断电瞬间状态。
在通电开始瞬间应把线圈看成断开,通电稳定时可把理想线圈看成导线或被短路来分析问题。
断电时线圈可视为一瞬间电流源(自感电动势源),它可以使闭合电路产生电流。
二、自感现象题型及其分析
1. 判断灯亮度情况的变化问题
例1(1997年高考题)如图2所示的电路中A A 12和是完全相同的灯泡,线圈L 的电阻可以忽略。
下列说法中正确的是( )
A. 合上电键S 接通电路时,A 2先亮,A 1后亮,最后一样亮
B. 合上电键S 接通电路时,A A 21和始终一样亮
C. 断开电键S 切断电路时,A 2立即熄灭,A 1过一会才熄灭
D. 断开电键S 切断电路时,A A 21和都过一会才熄灭
解析 自感线圈具有阻碍电流变化的作用,当电流增加时,它阻碍电流增加;当电流减小时,它阻碍电流减小,但阻碍并不是阻止。
闭合电键时,L 中电流从无到有,L 将阻碍这一变化,使L 中电流不能迅速增大;而无电感的电路,电流能够瞬时达到稳定值。
故A 1灯后亮,A 2灯先亮,最后两灯电流相等,一样亮。
断开电键时,L 中产生自感电动势与自身的电流方向相同,该自感电流通过A A 12、,使A A 12、过一会儿才熄灭,故选项A 、D 正确。
点评 本题在断电瞬间,两灯尽管可以过一会熄灭,但看不到更亮一下再熄灭的现象。
其原因是,线圈L 的电阻可以忽略,电键闭合稳定后,两灯中的电流相等。
如果本题的电路改成图3所示,由于电路闭合稳定时,流过线圈的电流大于灯A 2中的电流,A A 12比亮;当电键断开瞬间,A A 21和都过一会才熄灭,但A 2会更亮一下。
图3
2. 自感中的电流计算问题
例2 如图4所示,电源电动势E=6V ,内阻不计,A 和B 两灯都标有“6V 0.3A ”字样,电阻R 和线圈L 的直流电阻R L 均为20Ω,试通过计算,分析在电键S 闭合和断开的极短时间内流过A 和B 两灯的电流变化情况。
图4
解析 A 和B 两灯的电阻均为R R U I A B ===/20Ω。
S 刚闭合时,由于L 中电流不能突变,只能由零逐渐增大到稳定值,因此L 中电流为零相当于断路,此时的电路等效成图5所示。
对图5,不难算出流过A 、B 两灯的电流分别为I A B A I A 110102==..和。
电路稳定后,A 、B 两灯分别与R 、L 并联后再串联,此时线圈相当于一个20Ω的电
阻,根据直流电路知识,容易算出流过A 、B 两灯的电流均为I I A A B 22015==.。
图5
当S 断开瞬间,A 灯中的电流立即从0.15A 变为零。
由于发生自感现象,线圈L 中的电流不能发生突变,在线圈L 与B 灯组成的回路中,L 中的电流由向右的0.15A 开始变小,故B 灯中电流从向右流过的0.15A 立即变为向左流过的0.15A ,然后逐渐减为零。