2.4绝对值与相反数(2)
- 格式:doc
- 大小:174.50 KB
- 文档页数:3
2.4 绝对值与相反数教案-2022-2023学年苏科版数学七年级上册教案概述本节课将学习关于绝对值和相反数的概念与性质。
通过教师引导和学生讨论,培养学生分析问题和解决问题的能力,帮助学生掌握绝对值和相反数的计算方法,并将其应用到解决实际问题中。
教学目标•了解绝对值的定义与性质;•理解相反数的概念与运算规则;•掌握求绝对值和相反数的方法;•能够运用绝对值和相反数解决实际问题。
教学重点•绝对值的定义与性质;•相反数的概念与运算规则。
教学难点•绝对值的应用;•相反数的深入理解。
教学准备•教师:教案、黑板、粉笔、教学素材;•学生:课本、笔、本子。
1. 导入新知识•教师引入绝对值的概念,并给出几个有关绝对值的例子,如|-3|、|5|等。
•引导学生发现绝对值的定义:绝对值是一个数离0点的距离,且不考虑其正负性。
2. 绝对值的性质•教师通过示意图展示绝对值的性质:绝对值永远是非负数,即|a| ≥ 0。
•学生进行小组讨论,总结绝对值的另外两个性质:|a| = a (当a ≥ 0)和|a| = -a (当a < 0)。
3. 相反数的概念和运算规则•教师引入相反数的概念,并给出几个有关相反数的例子,如3的相反数是-3,-5的相反数是5等。
•学生进行讨论,总结相反数的运算规则:一个数与它的相反数相加等于0。
4. 绝对值和相反数的计算方法•教师提供一些练习题,让学生运用绝对值和相反数的计算方法进行求解。
5. 绝对值和相反数的应用•教师通过实际问题的引导,让学生运用绝对值和相反数的知识解决实际生活中的问题,如气温的变化、金额的增减等。
6. 小结与反思•教师帮助学生进行知识的小结与反思,对学生在课堂上的表现给予评价和鼓励。
•学生可以通过课后作业巩固对绝对值和相反数的掌握程度。
•学生可以尝试将绝对值和相反数的知识应用到更复杂的问题中,提高问题解决能力。
总结通过本节课的学习,学生掌握了绝对值和相反数的概念与运算规则,通过实际问题的应用,提高了解决问题的能力。
宜兴市实验中学数学学科初一年级教案课题:绝对值与相反数(2)课型:新授课日期:主备:许超云审核:一、教学目标1.复习巩固绝对值与相反数的几何意义,探索绝对值的代数意义。
2.会结合数轴利用绝对值比较数的大小。
二、教学重点难点1.重点:有理数的绝对值与该数或他的相反数的关系。
2.难点:会用绝对值比较两个负数的大小三、教学方法:结构尝试教学法四、教学过程知识点2:结合数轴,体会利用绝对值可以比较同号的两个数的大小相反数有什么关系?探索活动(二)1、比较大小(1)75与0;0与—2;—9与—9.3; —6与62、两个正数中,绝对值大的那个数一定大吗?两个负数呢?绝对值大的数大,绝对值小的数小吗?数轴上表示两个正数的点都在原点的右边,并且表示绝对值较大的正数的点在另一个点的右边;数轴上表示两个负数的点都在原点的左边,并且表示绝对值较大的负数的点在另一个点的左边.、学生分组讨论交流,教师引导结合数轴,体会利用绝对值可以比较同号的两个数的大小.三、变式训练归纳小结1 求下列各数的绝对值—8;3.7;0;—32方法指导:求一个数的绝对值,首先要分清这个数是正数、负数、还是0,然后才能正确地写出它的绝对值.当a是正数时,a的绝对值是它本身,学生先自主思考,然后参与讨论,归纳。
通过学生观察分析使学生主动参与到学习活动中来,培养学生的观察分析能力和语言表达能力。
第2章 有理数2.4 绝对值与相反数 课程标准 课标解读 1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 1、相反数和绝对值的表示方法 2、数轴的几何意义表示,在数轴上分析绝对值和相反数性质知识点01 相反数 1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.【微点拨】(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.【即学即练1】1.3-的相反数是( )A .13-B .13C .3D .3-【答案】C【分析】目标导航知识精讲依据相反数的定义求解即可.【详解】解:-3的相反数是3.故选:C.知识点02 多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .【微点拨】(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【即学即练2】2.在下列各数:13⎛⎫--⎪⎝⎭,36-,227,0,-(+3),-|-2015|中,负数的个数是()A.1个B.2个C.3个D.4个【答案】C【分析】先化简各数,再与0比较即可.【详解】解::11=033⎛⎫-->⎪⎝⎭,-(+3)=-3<0,-|-2015|=-2015<0,负数有36-,-(+3),-|-2015|,负数的个数是3.故选择:C.知识点03 绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.【微点拨】(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.【即学即练3】3.已知关于x 的方程mx |m |+1=0是一元一次方程,则m 的取值是( )A .±1B .﹣1C .1D .以上答案都不对【答案】A【分析】根据一元一次方程的定义得出m≠0且|m|=1,求出m 即可.【详解】解:∵关于x 的方程mx |m|+1=0是一元一次方程,∵m≠0且|m|=1,解得:m =±1,故选:A . 知识点04 有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩-数为0 正数与0:正数大于0负数与0:负数小于03. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【微点拨】利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.【即学即练4】4.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∵()4102->-->>-,∵最小的数是-2;故选A .考法01 化简绝对值1、根据题设条件只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.2、借助数轴 能力拓展①零点的左边都是负数,右边都是正数.②右边点表示的数总大于左边点表示的数.③离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.3、采用零点分段讨论法①求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).②分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.③在各区段内分别考察问题.④将各区段内的情形综合起来,得到问题的答案.误区点拨 千万不要想当然地把 等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.【典例1】a 、b 、c 三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )∵0ab >; ∵c a b -<<-; ∵11a b >; ∵b b =-. A .4个B .3个C .2个D .1个 【答案】B【分析】根据有理数大小的比较可得数轴上的右边的数总大于左边的数得出b <c <0<a ,b a c >>,再分别判断各式.【详解】解:结合图形,根据数轴上的右边的数总大于左边的数,可得b <c <0<a ,b a c >>.∵∵0ab <,故错误;∵c a b -<<-,故正确; ∵11a b>,故正确; ∵b b =-,故正确;考法02 绝对值的意义一.绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。
3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。
(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。
请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。
例如:3的绝对值记为 ,读作 。
3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。
例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。
如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。
典例解析:相反数与绝对值例1 求下列各数的绝对值,并把它们用“>”连起来.87-,91+,0,-1.2 分析 首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.187->-,其他数的比较就容易了. 解 .2.12.1,00,9191,8787=-==+=-.2.187091->->>+说明: 利用绝对值只是比较两个负数. 例2 求下列各数的绝对值:(1)-38;(2)0.15;(3))0(<a a ;(4))0(3>b b ; (5))2(2<-a a ;(6)b a -.分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论. 解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a <0,∴|a |=-a ; (4)∵b>0,∴3b>0,|3b|=3b ;(5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ;(6)⎪⎩⎪⎨⎧<-=>-=-).();(0);(b a a b b a b a b a b a说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论. 例3 一个数的绝对值是6,求这个数.分析 根据绝对值的意义我们可以知道,绝对值是6的数应该是6±. 说明:互为相反数的两个数的绝对值相等.例4 计算下列各式的值(1)272135-+++-;(2)21354543-+--; (3)71249-⨯-;(4).21175.0-÷- 分析 这些题中都带有绝对值符号,我们应先计算绝对值再进行其他计算. 解 (1)83272135272135=++=-+++-;(2)2162135454321354543=+-=-+--; (3)1057124971249=⨯=-⨯-; (4).5.021175.021175.0=÷=-÷- 说明:在去掉绝对值之后,要注意能简算的要简算,如(2)题. 例5 已知数a 的绝对值大于a ,则在数轴上表示数a 的点应在原点的哪侧?分析 确定表示a 的点在原点的哪侧,其关键是确定a 是正数还是负数.由于负数的绝对值是它的相反数正数,所以可确定a 是负数.解 由于负数的绝对值是它的相反数,所以负数的绝对值大于这个负数;又因为0和正数的绝对值都是它本身,所以a 是负数,故表示数a 的点应在原点的左侧.说明:只有负数小于其本身的绝对值,而0和正数都等于自己的绝对值. 例6 判断下列各式是否正确(正确入“T”,错误入“F”): (1)a a =-;( ) (2)a a -=-;( )(3))0(≠=a aaaa ;( ) (4)若|a |=|b|,则a =b ;( ) (5)若a =b ,则|a |=|b|;( )分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a =1,则-|a |=-|1|=-1,而|-a |=|-1|=1,所以-|a |≠|-a |.在第(4)小题中取a =5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:当0>a 时,1==a a a a ,而1==aaa a ,a aaa =∴成立; 当0<a 时,1-=-=a a aa ,而1-=-=aaa a ,aaa a =∴也成立. 这说明0≠a 时,总有成立.此题证明的依据是利用的定义,化去绝对值符号即可. 解:其中第(2)、(4)、小题不正确,(1)、(3)、(5)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便. 例7 若0512=-++y x ,则y x +2等于( ).分析与解:“任意有理数的绝对值一定为非负数.”利用这一特点可得012≥+x ;05≥-y .而两个非负数之和为0,只有一种可能:两非负数均为0.则012=+x ,21-=x ;05=-y ,5=y .故452122=+⎪⎭⎫⎝⎛-⨯=+y x .说明:任意有理数的绝对值一定为非负数,因为它表示的是一个数在数轴上的对应点到原点的距离.绝对值的这个特性今后会经常用到.几个非负数的和为0,则每一个非负数都是0. 例8 计算)5(13>-+-x x x .分析:要计算上式的结果,关键要弄清x -3和1-x 的符号,再根据正数的绝对值等于本身,负数的绝对值等于它的相反数,0的绝对值是0.可求上式的结果,又∵5>x ,故03<-x ,而01>-x .解:又∵5>x ,∴03<-x ,01>-x ,∴421313-=-+-=-+-x x x x x .说明:利用绝对值的代数定义灵活化简含绝对值的式子同,首先应确定代数式的符号.另外,要求出负数的相反数.例9 指出下面各数的相反数:-5,3,211,-7.5,0 分析:如果两个数只有符号不同则这两个数互为相反数. 解:-5的相反数是+5,3的相反数是-3;211的相反数是-211;-7.5的相反数是7.5;0的相反数是0.注意:(1)要注意相反数和倒数之间的区别.(2)只有0的相反数是它本身.例10 指出下面数轴上各点表示的相反数.分析:首先弄清A、B、C、D各点表示的数,然后根据相反数的意义就可以写出其相反数.解:A点表示的数的相反数是1;B点表示的数的相反数是-2;C点表示的数的相反数是0;D点表示的数的相反数是3.说明:不要把“表示的数”和“表示的数的相反数”混淆.例11 在下面的等式的□中,填上连续的五个整数,使这个等式成立.0-□-□-□-□-□=0分析:上面的式子的左边可以看成是和的省略“+”号形式,所以上式可以写成0+(-□)+(-□)+(-□)+(-□)-□=0所以可以变为0+(-□)+(-□)+(-□)+(-□)-□=0由此可知:0+(-□)+(-□)+(-□)-□=□依次这样做下去可把原式变为□+□+□+□+□=0由此可知要使五个连续的整数的和是0,其中必有两对数互为相反数,另一个是0,所以这五个数是-2,-1,0,1,2.解:原式可变形为:□+□+□+□+□=0故五个数应该是-2-1,0,1,2.注意:(1)要注意题中给出的条件是“连续整数”,如果去掉“连续”该题的解就将很多了.(2)事实上这个题我们还可以采取下面的方法进行分析.我们可把-□用□去替换就可以直接得到□+□+□+□+□=0,但这种想法比较抽象,不易理解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,设甲每天做x个,乙每天做y个,则可列出的方程组是( )A.156304410x yx y+=⎧⎨+=-⎩B.65304410x yx y=⎧⎨+=-⎩C.65304410x yx y=⎧⎨+=+⎩D.156304410x yx y+=⎧⎨+=+⎩【答案】B【解析】设甲每天做x个,乙每天做y个,根据题意即可列出方程组.【详解】设甲每天做x个,乙每天做y个,根据如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,可得方程组65304410 x yx y=⎧⎨+=-⎩故选B.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行列出方程. 2.奥运会的年份与届数如下表,表中n的值为()A.28 B.29 C.30 D.31【答案】D【解析】第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年;第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年,根据规律代入相应的年数即可算出届数.【详解】观察表格可知每届举办年份比上一届举办年份多4,则第n届相应的举办年份=1896+4×(n−1)=1892+4n年,1892+4n=2016, 解得:n=31, 故选D. 【点睛】本题考查数字变化的规律,解题的关键是由题意得出第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年. 3.在平面直角坐标系中,将点(-2,3)向上平移1个单位长度,所得到的点的坐标是( ) A .(-1,3) B .(-2,2) C .(-2,4) D .(-3,3)【答案】C【解析】试题分析:点(-2,3) 向上平移1个单位长度,所以横坐标不变,纵坐标加1,因此所得点的坐标是(-2,4). 故选C .点睛:本题考查了点的平移的坐标特征,需熟记沿横轴平移,横坐标变化,沿纵轴平移纵坐标变化,沿正方向平移加,沿负方向平移减.4.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表:我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >>【答案】D【解析】根据题意,按计费规则计算即可. 【详解】解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>, 故选D . 【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则.5.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .x 2{x 1>≤-B .x 2{x 1<>-C .x 2{x 1<≥-D .x 2{x 1<≤-【答案】C【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
学习目标:1.理解相反数的意义,掌握求一个已知数的相反数;2.培养学生的观察、归纳与概括的能力.重点:理解相反数的意义,掌握求一个已知数的相反数;难点:在数轴上画出表示互为相反数的点,让学生探索相反数的特征。
一、自主学习:(一) 复习巩固: 在数轴上表示下列各数,并分别写出它们的绝对值:(二) 导学部分:1.如图,观察数轴上点A 、点B 的位置及它们到原点的距离,你有什么发现?2.观察下列各对数,你发现了什么?请与同学交流.5与5-,2.5与5.2-,32与32-,π与-π.二、合作、探究、展示:1. 通过上面的讨论,你们归纳上面的两对数和这两对数在数轴上对应的两组点的特点:(1)(2)2.由上面的归纳你能得出一个新的概念吗?________________________称互为相反数(opposite number ).举例:如何求一个数的相反数?3.例题:例3 求3、-4.5、47的相反数.例4 化简:-(+2),-(+2.7),-(-3),-(-34).三、当堂检测及拓展练习:1、P26 练一练 1、2、3、4___________2、-(-3)的相反数是;的相反数是a的相反数是___________; _________的相反数是2;a-b的相反数是___________;3、判断:(1)a的相反数是负数()(2)正数与负数互为相反数()(3)符号不同的两个数互为相反数()(4)互为相反数的两个数必然不相等()(5)任何一个有理数都有相反数()4、在数轴上,若点A、B表示的数互为相反数,点A在点B的右侧,且这两点之间的距离为8,则点A表示数__________,点B表示数___________四、课堂小结:五、布置作业:六、。
2.3绝对值与相反数(2)目的与要求 加深对绝对值的概念的理解,能借助数轴理解相反数的概念,能求一个数的相反数。
知识与技能 理解相反数的两种概念,①只有符号不同的两个数是互为相反数;②符号不同,且到原点距离相等的两个数是互为相反数。
情感、态度与价值观 利用数轴帮助理解相反数的概念。
了解辩证唯物主义观点中的矛盾论与相对论。
重点、难点 绝对值与相反数的联系。
教学过程一、情境创设引入在数轴上分别找到下列每一对数所表示的点;并指出它们与原点的距离的关系,再求它们的绝对值,你会发现一些什么共同点?将你的结论与同伴交流发现,每一对数,①它们的绝对值相等②它们到原点的距离相等,并且分别在原点的两侧。
③它们只有符号不同。
你还能举出有这样特征的几对数吗?自主探究1.在数轴上到原点的距离是2的点有 个,它们到原点的距离各是 它们之间还有什么关系?2.像5与-5、-2.5与2.5 …这样 、 的两个数,叫做互为相反数,其中一个是另一个的________(只有符号不同的两个数).规定:零的相反数是零3.正数的相反数是__________;负数的相反数是___________;0的相反数是_________.例题剖析例1 求出3、-4.5、0、74的相反数(在一个数的前面添一个“-”,就表示这个数的相反数)例2 化简下列各数的符号:(1)+(—25) (2)-(+18) (3)+(+60)(4)-{-[-(+3)]} (5)—(—88) (6)—[—(+1)]例3 (1)+2.3的相反数是____, |+2.3|=____(2)-10.5的相反数是____,|-10.5|=____(3)0的相反数是____, |0|=___由此可知:正数的绝对值等于 ;负数的绝对值等于 ;0的绝对值等于 。
例4 已知|x -2|+|y+4|=0,试求x 和y 的值。
例5 若|x|= 2 |y|=9,且x<y ,求x +y 的值例6 有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“>”把它们连接起来。
《2.4绝对值与相反数(2)》作业一、选择题1、下列各数中,相反数等于5的数是 ( )A .-5B .5C .-D . 2、-(-2)的相反数是 ( )A .2B .C .-D .-2 3、下列叙述不正确的是 ( )A .正数的相反数是负数,负数的相反数是正数B .-个正数和一个负数互为相反数C .互为相反数的两个数有可能相等D .数轴上与原点距离相等且位于原点两侧的两个点所表示的数一定互为相反数4、如果a >b ,那么-a 与-b 的大小关系是 ( )A .-a >-bB .-a <-bC .-a =-bD .无法比较5、下列各对数中,互为相反数的有 ( )①(-1)与+1;②+(+1)与-1;③-(-2)与+(-2);④-(-)与+(+); ⑤-(+2)与-(-2);A .2对B .3对C .4对D .5对二、填空题1、-(-π)的相反数是_______.2、化简(1)-(+2)=_______;(2)+(-)=_______;(3)-[-(-3)]=_______.3、(1)若a =-13,则-a =________;(2)若-a =5.4,则a =_______.4、已知a 与b 互为相反数,b 与c 互为相反数,且c =-10,则a =_______.5、在数轴上,若点A 和点B 分别表示互为相反数的两个数(点A 在点B 的左侧),并且这两点间的距离是12,则两点所表示的数分别是_______,_______.三、解答题必做题1、写出下列各数的相反数.+2,-3,0,-(-1),-3,-(+4)2、化简下列各数:(1)+(-2) (2)-(-) (3)-[-(+3)](4)-[-(-2)] (5)-[+(-1.8)] (6)-[+(-|-3|)]151512121212151252选做题3、数轴上,点A表示的数为a,当点A在数轴上向右平移了5个单位后是点B,点A与点B表示的数恰好互为相反数,那么数a是几?4、已知有理数a、-2、b在数轴上的位置如图所示,请将a、-2、b的相反数在数轴上表示出来,并将这6个数用“<”连接起来.《2.4绝对值与相反数(2)》参考答案一、选择题1.A2.D3.B4.B5.C二、填空题1、-π2、(1)-2 (2)-15 (3)-33、(1)13 (2)-5.44、-1015、-6,6三、解答题必做题1、 2的相反数是-2; -3的相反数是3; 0的相反数是0; -(-1)的相反数是-1; -312的相反数是312; -(+4)的相反数是4.2、(1)-2;(2)52;(3)3;(4)-2;(5)1.8;(6)3. 选做题3、由题意,得 a <0,点B 表示的数大于0.5÷2=2.5,所以点A 表示的数a =-2.5.4、。