河流纳污能力计算
- 格式:ppt
- 大小:1.54 MB
- 文档页数:57
河流纳污能力计算河流是地球上丰富的水资源之一,它不仅为生物提供了生活所需的水源,还是陆地生态系统的重要组成部分。
然而,由于工业化和城市化的发展,河流受到了严重的污染。
为了研究河流的污染水平,我们需要计算河流的纳污能力。
河流的纳污能力是指在一定时间内,河流可以容纳并稀释的污染物的数量。
纳污能力取决于河流的特性、水量、污染物种类等因素。
下面我们将介绍两种常用的计算方法:影响系数法和水质模型法。
影响系数法是一种常用的估算河流纳污能力的方法。
它主要通过考虑一些参数来计算河流的纳污能力。
这些参数包括流速、流量、水深、溶解氧含量、有机物含量等。
通过对这些参数的测量和分析,我们可以得到河流的污染物限制浓度。
然后,我们可以将河流的纳污能力计算为:纳污能力=污染物限制浓度×流量水质模型法是一种更复杂但更准确的计算河流纳污能力的方法。
它建立了一个描述河流水质变化的模型。
该模型基于污染物质量守恒定律,并考虑了河流的运动、扩散、降解等因素。
水质模型可以根据输入的初始条件和污染物排放情况,模拟河流污染物的传输和转化过程。
通过模拟和计算,我们可以得到污染物在河流中的浓度分布。
然后,我们可以计算河流的纳污能力为:纳污能力=河流长度×污染物浓度×断面积其中,河流长度是指污染物在河流中的传输路径长度,污染物浓度是河流中污染物的平均浓度,断面积是河流横截面的面积。
然而,需要注意的是,河流的纳污能力并非无限大。
当污染物排放量超过河流的纳污能力时,就会导致河流的污染水平上升。
这会对河流的生态环境和生物多样性产生严重影响。
因此,在进行工业和城市建设时,我们需要合理规划和控制污染物的排放量,以保护河流的生态系统。
总结起来,河流的纳污能力是一个重要的指标,用于估算河流可以容纳并稀释的污染物的数量。
通过影响系数法和水质模型法等方法,我们可以计算河流的纳污能力。
然而,为了保护河流的生态环境,我们需要合理控制污染物的排放量,以保持河流的水质和生物多样性。
水域纳污能力计算:1、河流纳污能力计算1.1、河道类型划分:Q ≥150m 3/s 为大型河段、15—150m 3/s 为中型河段、Q ≤15m 3/s 为小型河段。
1.2、河道特征和水文过程简化:(1)宽/深≥20时简化为矩形河段,(2)弯曲系数≤1.3时简化为顺直河道,(3)河道特征和水力条件有显著变化的河段在显著变化处分段。
1.3、设计水文条件:常年河流采用90%保证率最枯月平均流量或近10年最枯月平均流量作为设计流量、季节性/冰封河流采用不为0的最小月平均流量为样本参照常年河流计算设计流量、流向不定的水网地区/潮汐河流采用90%保证率流速为0时的低水位水量为设计流量、有水利工程的河段采用最小下泄流量或生态基流为设计流量。
1.4 河流模型(1)零维模型:污染物在河段内均匀混合,适用于水网地区的河段或小型河段。
根据入河污染物的分布情况划分不同浓度的均匀混合段,分段计算水域纳污能力。
)/()(0Q Q Q C Q C C p p p +⋅+⋅=C —污染物浓度(mg/L )C p —排放的废污水污染物浓度(mg/L )Q p —废污水排放流量(m 3/s )C 0—初始断面污染物浓度(mg/L )Q —初始断面入流流量(m 3/s )。
)()(0p s Q Q C C M +⋅-=M —水域纳污能力(g/s )C s —水质目标浓度值(mg/L )。
(2)一维模型污染物在河流横断面上均匀混合,适用于Q<150m 3/s 的中小型河段。
u xK x e C C -⋅=0x —沿河段的纵向距离(m )Cx —流经x 距离后的污染物浓度(mg/L )u —设计流量下河道断面的平均流速(m/s )K —污染物综合衰减系数(1/s ))()(p x s Q Q C C M +⋅-=排污口位于河段中部(x=L/2)时,u LK u LK L x e Q m e C C --=⋅+⋅=0 m —污染物入河速率(g/s )C x=L —水功能区下段面污染物浓度(mg/L )(3)二维模型污染物在河段横断面上非均匀混合,适用于Q ≥150m 3/s 的大型河段。
关于水域纳污能力计算理论的总结与思考关于水域纳污能力计算理论的总结与思考随着工业化和城市化的快速发展,水环境问题逐渐引起人们的关注。
水污染的治理是当今社会亟待解决的重要问题之一。
而水域纳污能力计算理论作为评估水环境质量和制定水资源管理规划的重要工具之一,一直备受研究者关注。
本文将对水域纳污能力计算理论进行总结与思考。
首先,水域纳污能力计算理论的基础是水环境的自净能力。
自净能力是指水体通过自然的物理、化学和生物过程,将污染物转化、降解或去除的能力。
这种自然的自净过程包括曝气、沉淀、生物降解等。
水体的自净能力与水体本身的特性、环境因素、污染物的种类和浓度等密切相关。
因此,水域纳污能力计算理论需要考虑到各种因素的综合影响。
其次,水域纳污能力计算理论需要建立合理的评价指标系统。
评价指标的选择应综合考虑水质状况、水体调查数据和环境规划要求等因素。
常见的评价指标包括水质指数、生态指标和设定目标值等。
水质指数是通过对水体中的污染物进行检测,综合评估水质状况的指标。
而生态指标则是通过评估水生态系统的健康状况来评估水质。
设定目标值则是制定水质保护目标的依据。
此外,水域纳污能力计算理论还需要考虑到水域内不同污染物的迁移转化规律。
不同污染物具有不同的迁移转化机制和特性,如生物降解、吸附、沉降等。
为了准确评估水质状况和纳污能力,需要对不同污染物的迁移转化规律进行研究,并建立相应的模型和算法。
在实际应用中,水域纳污能力计算理论主要用于制定水污染治理措施和制定水资源管理政策。
根据计算结果,决策者可以有针对性地制定治理方案,合理调整生产排放、加强环境监管和优化水资源利用。
通过科学计算水域纳污能力,可以规划和保护水生态系统,保证水体的可持续利用。
然而,水域纳污能力计算理论还存在一些问题和挑战。
首先,水质监测数据的获取存在难度,尤其是在一些地区和水域条件复杂的情况下。
其次,水域纳污能力计算涉及到多学科的综合运用,需要建立完善的理论体系和方法。
S L 中华人民共和国水利行业标准 SL 348—2006水域纳污能力计算规程 Code of practice for computation on allowable permittedassimilative capacity of water bodies2006—10—23发布 2006—12—01实施 中华人民共和国水利部 发布前 言根据水利部水利水电技术标准制修订计划安排,按照《水利技术标准编写技术规定》(SL 1-2002),制定《水域纳污能力计算规程》。
《水域纳污能力计算规程》共7章22节111条和1个附录,主要技术内容有:——总则和术语——适用范围和基本程序;——设计水文条件及计算方法;——数学模型计算法的计算条件、模型、参数和方法;——污染负荷计算法的计算条件和方法;——合理性分析与检验。
本标准批准部门:中华人民共和国水利部本标准主持机构:水利部水资源管理司本标准解释单位:水利部水资源管理司本标准主编单位:长江流域水资源保护局本标准出版、发行单位:中国水利水电出版社本标准主要起草人:洪一平 程晓冰 袁弘任 石秋池穆宏强 刘 平 敖良桂 吴国平本标准审查会议技术负责人:朱党生本标准体例格式审查人:金 玲目 次1 总则 (1)2 术语 (2)3 基本程序 (4)4 河流纳污能力数学模型计算法 (6)4.1 一般规定 (6)4.2 基本资料调查收集 (6)4.3 污染物的确定 (7)4.4 设计水文条件 (8)4.5 河流零维模型 (8)4.6 河流一维模型 (8)4.7 河流二维模型 (9)4.8 河口一维模型 (9)5 湖(库)纳污能力数学模型计算法 (10)5.1 一般规定 (10)5.2 基本资料调查收集 (11)5.3 污染物的确定 (12)5.4 设计水文条件 (12)5.5 湖(库)均匀混合模型 (12)5.6 湖(库)非均匀混合模型 (12)5.7 湖(库)富营养化模型 (13)5.8 湖(库)分层模型 (13)6 水域纳污能力污染负荷计算法 (14)6.1 一般规定 (14)6.2 基本资料调查收集 (14)6.3 污染物的确定 (15)6.4 实测法 (15)6.5 调查统计法 (15)6.6 估算法 (16)7 合理性分析与检验 (18)附录 数学模型及参数 (20)条文说明 (34)1 总 则1.0.1 为规范全国水域纳污能力计算技术要求、基本程序和方法,制定本规程。
河流纳污能力计算一维模型主要参数的取值分析彭振华;尤爱菊;徐海波【摘要】According to the calculation criteria of watershed environmental capacity,a one dimensional model is recommended for most of medium or small rivers. The estimation of two important coefifcients in themodel,which are river flow velocity and pollutant comprehensive degeneration coefifcient,are basically unreliable due to the insufifcient data. Based on the ifeld observation and the calculation of the river environmental capacity of Yongkang city,the method to determine these two important coefifcients in the model and the range of these two coefifcients will be discussed and analyzed in this study in order to construct a one dimensional model representing the river environmental capacity of Yongkang city.%根据水域纳污能力计算规程,中小型河流纳污能力的计算推荐采用河流一维水质模型。
由于基础观测资料普遍不足,模型的河流流速、污染物综合衰减系数2个重要参数的取值往往缺少可靠依据。
河流纳污能力计算对宽深比不大的河流, 污染物质在较短的时间内, 基本上能在断面内均匀混合。
污染物浓度在断面上横向变化不大, 可用一维水质模型模拟污染物沿河流纵向的迁移问题。
污染源集中概化点的位置确定在污染源比较集中的地方,一般情况下, 污染源比较分散, 可认为这个点在河段的1 /2处。
值得注意的是,对于有较大支流汇入的河段,计算更为复杂,要考虑到汇入支流的水质水量情况, 计算公式要调整。
污染源中断面概化得纳污能力计算公式:W=(Cs/exp(-kL/u)一C0exp(-kL/2u))*Q式中:W一纳污能力,g/s;Cs一规划河段水质标准,mg/L;C。
一河段上游来水水质,mg/L;Q一功能区段设计流量,m3/s;u一河段平均设计流速,km/d;k一污染物衰减系数,d-1;L一功能区段长,km。
利用水质模型进行纳污能力计算时,将污染物在水环境中的物理降解、化学降解和生物降解概化为综合衰减系数。
考虑到综合衰减系数对纳污能力计算结果影响很大。
可采用以下方法进行CODcr和HN3一综合衰减系数的测定。
选取河道顺直、水流稳定、中间无支流汇入、无排污口的河段,分别在河段上游A(点)和下游B(点)布设采样点,监测污染物浓度值,并同时测验水文参数以确定断面平均流速。
综合衰减系数(K)按下式计算:K=u/Δx*lnC A/C B式中,u为断面平均流速,m/s;Δx为上下断面之间距离,m;C A为上断面污染物浓度,mg/L;C B为下断面污染物浓度,mg/L。
根据上述各设计条件和参数对纳污能力计算的影响分析,在实际计算中应注意选择合适的设计条件和参数。
a) 污染源概化选择。
在实际计算中, 采用哪一种概化要根据其实际的排污口的位置分布和污染负荷分布做出合适的选择,对于污染源分布比较均匀的河段可采用均匀概化或集中点为中点的集中点概化;对于污染源比较集中的河段可采用集中点概化,集中点要根据集中排放的位置来确定。
b) 设计流量和流速的确定。
基于动态规划的河流纳污能力优化计算张晓;罗军刚;陈晨;解建仓【摘要】[目的]将动态规划引入河流纳污能力计算,以解决传统算法中水质目标质量浓度难以确定、纳污能力可能出现负值及纳污能力难以达到最大的问题.[方法]在传统纳污能力算法的基础上,以河流纳污能力最大为目标,提出了基于动态规划的纳污能力优化算法,并以渭河干流陕西段为例进行实例检验.[结果]利用建立的基于动态规划的河流纳污能力优化算法,计算得到渭河干流陕西段的纳污能力结果为59 618.88 t/年,传统算法的结果为58 377.45 t/年,表明优化算法较传统算法可以得到更优的纳污能力,而且优化算法计算所得的纳污能力为水域纳污能力定义中所强调的“最大数量”,同时优化算法可以得到确切的水质目标质量浓度且可以避免纳污能力出现负值.[结论]基于动态规划的河流纳污能力优化算法具有一定的合理性和可行性,为纳污能力计算研究提供了一种新思路.【期刊名称】《西北农林科技大学学报(自然科学版)》【年(卷),期】2014(042)010【总页数】7页(P218-224)【关键词】河流;纳污能力;动态规划;优化算法【作者】张晓;罗军刚;陈晨;解建仓【作者单位】西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048【正文语种】中文【中图分类】TV213.4;X522水域纳污能力[1](也称水环境容量)是指在设计水文条件下,满足计算水域的水质目标要求时,该水域所能容纳的某种污染物的最大数量。
潘建波等[2]运用一维水体纳污计算模型对松花江流域的水体纳污能力进行了计算分析;刘伟等[3]提出基于MIKE11模型的河流水功能区纳污能力计算方法,并将其应用于松花江流域;周洋等[4]利用一维稳态水质模型和水环境容量模型,采用段首控制高功能区和段末控制低功能区相结合的方法计算了渭河陕西段纳污能力;徐仲翔等[5]在WASP7.3模型的基础上,提出河流纳污能力的解析公式法,并用于兰江流域COD的水体纳污能力的计算。
第44卷㊀第2期2018年4月环境保护科学EnvironmentalProtectionScienceVol.44㊀No.2Apr.2018ꎬ32~36收稿日期:2017-09-05基金项目:国家自然科学基金(51479064ꎻ51379060ꎻ51379058)资助作者简介:刘晓东(1972-)ꎬ男ꎬ博士㊁副教授ꎮ研究方向:环境与生态水力学㊁环境模拟等ꎮE-mail:xdliu@hhu edu cn环境综合整治关于现行水域纳污能力计算规程中河流计算模型的探讨刘晓东1ꎬ杨㊀婷1ꎬ石佳佳1ꎬ刘㊀朗2ꎬ吴㊀偲1ꎬ姜翠萍1(1 河海大学环境学院㊀浅水湖泊综合治理与资源开发教育部重点实验室ꎬ江苏㊀南京㊀210098ꎻ2 句容市水利农机局ꎬ江苏㊀句容㊀212400)㊀㊀摘㊀要:水域纳污能力确定是实施水功能区限制纳污的基本工作ꎬ现行的«水域纳污能力计算规程(GB/T25173-2010)»在实际应用中存在一定争议ꎮ文章在综述水域纳污能力计算方法的基础上ꎬ探讨了现行水域纳污能力计算规程中河流计算模型中的若干问题ꎬ推导了改进后的计算模型ꎬ提出相应的修改建议ꎬ为水域纳污能力计算和未来计算规程的修订提供参考ꎮ关键词:水域纳污能力ꎻ河流ꎻ水质模型㊀㊀中图分类号:X26ꎻX522㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀DOI:10.16803/j.cnki.issn.1004-6216.2018.02.006DiscussionoftheCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesintheCurrentCalculationProceduresLiuXiaodong1ꎬYangTing1ꎬShiJiajia1ꎬLiuLang2ꎬWuSi1ꎬJiangCuiping1(1 KeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakesꎬMinistryofEducationꎬSchoolofEnvironmentꎬHohaiUniversityꎬNanjing210098ꎬChinaꎻ2 WaterConservancyandAgricultureBureauofJurongCityꎬJurong212400ꎬChina)㊀㊀Abstract:WaterpollutioncapacityisdeterminedtobethebasicworkforimplementationofpollutionlimitationinwaterfunctionalareasꎬandthereisagreatcontroversyinthepracticalapplicationofthecurrentCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodies(25173-2010GB/T).InthispaperꎬonthebasisofasurveyofwaterpollutantcapacitycalculationmethodꎬsomeproblemsinthecalculationmodeloftheexistingCodeofPracticeforComputationonPermissiblePollutionBearingCapacityofWaterBodiesarediscussedꎬandtheimprovedcalculationmodelisdeducedꎬwithcorrespondingsuggestionsputforwardsꎬprovidingreferenceforcalculationofwaterpollutioncapacityandrevisionoffuturecalculationprocedures.㊀㊀Keywords:WaterPollutionCapacityꎻRiverꎻWaterQualityModelCLCnumber:X26ꎻX522㊀㊀随着当代社会经济的快速发展和人们生活水平的进一步提高ꎬ使得公众对水环境的关注日益增加ꎬ对水资源的保护意识也逐渐增强ꎮ与此同时ꎬ大量污(废)水排入水体ꎬ使我国河流㊁湖泊等水域的水环境质量越来越差ꎬ也加剧了水资源短缺的情况ꎬ而水域纳污能力作为相关部门对水资源管理和配置的依据ꎬ也日益受到更多的关注ꎮ2011年中央1号文件要求实施最严格水资源管理制度ꎬ提出了 三条红线 的管理目标ꎬ水功能区限制纳污便是其中之一ꎮ而限制纳污则必须要计算出相应的水域纳污能力ꎬ故对纳污能力计算准确性的要求也逐渐提高[1]ꎮ而且由于水域纳污能力是建立在一定时期人们对水环境保护管理目标要求的水环境质量标准之上的ꎬ所以纳污能力具有社会和自然双重属性ꎬ更能反映当前的社会需求ꎬ更具实用性ꎬ所以对水域纳污能力计算的研究意义重大ꎮ纳污能力 一词最早源于1998年的全国水㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨33㊀资源保护规划ꎬ2002年«中华人民共和国水法»首次在法律上明确了水域纳污能力的概念ꎬ并与水域限制排污总量一起构成我国水资源保护行业的重要基础ꎮ 纳污能力 根据个人的理解ꎬ定义也各不相同ꎬ«水域纳污能力计算规程(GB/T25173-2010)»(以下简称为«计算规程»)中ꎬ将 纳污能力 定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ 纳污能力 概念的提出ꎬ为相关行业管理水资源提供了有效依据ꎮ1㊀水域纳污能力主要计算方法1 1㊀污染负荷计算法水域纳污能力的计算方法主要有两大类:污染负荷计算法和数学模型计算法ꎮ污染负荷计算法是根据现状污染物入河量确定水域纳污能力的方法ꎮ按照污染物入河量计算依据的不同又可以分为实测法㊁调查统计法和估算法ꎮ实测法是通过调查收集或实测入河排污口水量和污染物浓度计算污染物入河量ꎬ确定水域纳污能力ꎮ调查统计法是通过调查收集影响水功能区水质的陆域污染源及其排放量和入河系数计算污染物入河量ꎬ确定水域纳污能力ꎮ估算法是根据调查收集影响水功能区水质的陆域内的人口㊁工业产值㊁第三产业产值等和污染物排放系数计算污染物排放量ꎬ再根据入河系数估算污染物入河量ꎬ确定水域纳污能力ꎮ由于污染负荷计算法依据现状入河量确定水域纳污能力ꎬ其计算前提是在现状排污条件下功能区水质是满足计算水域的水质目标要求的ꎬ因此污染负荷计算方法只适用于水质现状较好㊁水质目标原则上维持现状水质的保护区和保留区以及现状水质较好㊁用水矛盾不突出的缓冲区ꎮ对于水质较差的保护区和保留区或者用水矛盾突出缓冲区ꎬ仍需采用数学模型法计算其纳污能力ꎬ并提出限制排污总量及其削减量意见ꎮ开发利用区的纳污能力根据各二级功能区的设计水文条件和水质目标等参数ꎬ选择数学模型法进行计算ꎮ1 2㊀数学模型计算法数学模型计算法是根据水域特性㊁水质状况㊁设计水文条件和水功能区水质目标值ꎬ应用数学模型计算纳污能力的方法ꎮ根据所采用数学模型的不同可以分为零维模型㊁一维模型㊁二维模型ꎬ文章根据对 满足计算水域的水质目标要求 理解的不同ꎬ可以分为总体达标法㊁断面控制法㊁混合区范围控制法㊁«计算规程»中的计算方法等ꎬ见图1ꎮ图1㊀水域纳污能力计算方法分类体系㊀㊀总体达标法是基于满足水域总体平均水质达标的前提下计算水域纳污能力的方法ꎮ该方法假设计算水域水质完全混合ꎬ数学模型大多采用零维水质模型ꎬ计算过程不考虑排污口位置分布ꎬ计算结果可以保证水域体积平均水质能够满足水功能区水质目标要求ꎮ如ꎬ梁音等[2]利用总体达标法计算了苏南运河水环境容量ꎮ控制断面达标法是基于满足控制断面达标的前提下计算水域纳污能力的方法ꎮ该方法认为功能区控制断面的水质达标ꎬ即为 满足计算水域的水质目标要求 ꎮ由于考虑了污染物空间不均匀性和控制断面位置差异ꎬ数学模型多采用一维水质模型或二维水质模型ꎮ在二维情况下即为控制点达标法ꎮ计算过程与概化排污口和控制断面的位置有关ꎬ根据断面的位置不同可分为段首控制法㊁段中控制法和段尾控制法3种[3-4]ꎮ计算结果可以保证控制断面水质能够满足水功能区水质目标要求ꎬ但不能保证水质总体达标ꎬ排污口下游至控制断面之间的水域存在超标现象ꎮ控制断面达标法由于与当前水功能区管理的目标较为一致ꎬ在水资源管理实践中得到了广泛的应用ꎮ如路雨等[4]ꎬ在一维河流水质模型下ꎬ探讨不同排污口位置㊁不同控制断面设定㊁不同稀释容量分配情景下的河流纳污能力计算方法ꎬ并以温州市飞云江河段为例ꎬ分析不同计算方法对河流纳污能力34㊀环境保护科学第44卷㊀计算结果的影响ꎻFangXiaoboetal[5]以75%和90%的基流量为设计流量ꎬ利用传统一维水质模型和QUAL2K模型分析钱塘江的纳污能力ꎻ孙昊元等[6]采用控制断面达标法计算了内秦淮河中段的纳污能力ꎻ吴慧秀[7]为克服实测排污资料的失真问题及无资料地区等问题ꎬ根据现有一维模型ꎬ推导出不含排污资料的纳污能力计算模型ꎮ混合区范围控制法是基于混合区范围控制的计算水域纳污能力的方法ꎮ该方法认为污染物排入河流后形成的混合区在一定范围内ꎬ即为 满足计算水域的水质目标要求 ꎮ数学模型多采用一维水质模型或二维水质模型ꎬ计算结果与排污口位置和混合区范围控制准则有关ꎮ对于一维水域ꎬ通常通过混合区长度来控制ꎬ对于二维水域ꎬ可以通过混合区长度㊁宽度或面积来控制ꎮ该方法主要应用于宽浅型水域ꎬ如向军[8]采用二维水质模型ꎬ选择化学需氧量㊁氨氮作为污染指标ꎬ对柳州市柳江进行纳污能力计算ꎻ马欢[9]使用一维和二维水质模型对松花江哈尔滨段水环境容量进行计算ꎻ王胜艳等[10]根据长江秦州段水动力特征和实际情况建立二维非稳态水量 水质数值模型ꎬ并计算该江段纳污能力ꎻWangFei-er[11]等在水质分析模拟程序的帮助下ꎬ制定污染物总量控制方案ꎬ并计算了西城河的纳污能力ꎮ现行的«计算规程»为我国水功能区限制纳污管理发挥了重要的指导作用ꎬ但在实际应用中也存在一定争议[1]ꎮ«计算规程»中的纳污能力计算方法是基于污染物稀释扩散原理来计算水域纳污能力ꎬ其基本计算公式如下:M=Q(Cs-Cx)式中:M为水域纳污能力ꎬg/sꎻQ为初始断面的入流流量ꎬm3/sꎻCs为水功能区水质目标ꎬmg/LꎻCx为计算水域代表断面(点)的水质浓度ꎬmg/Lꎮ该方法使河流㊁湖泊等水体纳污能力的计算简单㊁便捷ꎬ在水环境保护和水资源管理工作中得到广泛应用ꎮ如罗慧萍等[12]ꎬ针对河网区和湖库区分别采用一维㊁二维模型ꎬ计算了江苏省太湖流域水功能区纳污能力ꎮ但该方法在实际应用中存在较大争议ꎬ主要表现在:①计算公式来源于污染物均匀混合稀释假定ꎬ许多水体不满足这一假定ꎻ②计算公式在零维模型时没有考虑污染物的自净能力ꎬ而污染物自净能力是纳污能力的重要组成部分ꎻ③该方法没有与纳污能力的概念联系起来ꎬ物理意义不明确ꎬ计算结果难以保证 满足计算水域的水质目标要求 ꎮ2㊀关于«计算规程»中河流计算模型若干问题的探讨2 1㊀关于 水域纳污能力 的概念«计算规程»中给出的水域纳污能力的定义为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域所能容纳的某种污染物的最大数量 ꎮ其中 最大数量 是指计算时段内该区域所能容纳的某种污染物的最大数量还是单位时间内所能容纳的最大数量ꎬ其表意不明ꎬ可能会造成不必要的误解ꎬ故建议修改为 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大数量 或者 在设计水文条件下ꎬ满足计算水域的水质目标要求时ꎬ该水域单位时间内所能容纳的某种污染物的最大负荷 ꎮ明确的指出该定义中的 最大数量 是在单位时间内的数量ꎬ使该定义更加明确ꎮ2 2㊀关于河流零维模型的讨论零维是一种理想状态ꎬ把所研究的水体如一条河或一个湖库看成一个完整的体系ꎬ当污染物进入这个体系后ꎬ立即完全均匀的分散到这个体系中ꎬ污染物的浓度不会随空间的变化而变化ꎮ适用于污染物均匀混合的小型河段ꎮ2 2 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A 1)计算:c=(Qc0+QPcP)/(Q+QP)(A.1)式中:c为污染物浓度ꎬmg/Lꎻc0为初始断面的污染物浓度值ꎬmg/LꎻcP为排入该河段的废污水污染物浓度ꎬmg/LꎻQP为现有废污水的排放流量ꎬm3/sꎻQ为初始断面的入流流量ꎬm3/sꎮ相应的水域纳污能力按式(A.2)计算:M=(cs-c0)(Q+Qp)(A.2)㊀第2期刘晓东㊀等:关于现行水域纳污能力计算规程中河流计算模型的探讨35㊀式中:M为水域纳污能力ꎬg/sꎻcs为水质目标浓度值ꎬmg/Lꎮ2 2 2㊀修改建议㊀«计算规程»式(A.1)只考虑了水量稀释ꎬ没有考虑水体的自净能力ꎮ根据物质守恒定律ꎬ污染物转化只考虑综合降解ꎬ零维模型的基本方程为:Qc0+m=(Q+Qp)c+KVC式中:K为污染物综合衰减系数ꎬs-1ꎻV为该计算河段的体积ꎬm3ꎻm为污染物入河速率ꎬg/sꎮ从而推导出:c=(Qc0+m)/(Q+QP+KV)=(Qc0+QPcP)/(Q+QP+KV)(B.1)令c=cSꎬ相应的水域纳污能力修正式为:M=Q(cs-c0)+Qp(cs-cp)+KVCs=Q(cs-c0)+Qpcs+KVCs-m(B.2)相对于公式(A.2)ꎬ该公式考虑了污染物自净和功能区现有的污染物入河量对纳污能力的影响ꎮ2 3㊀关于河流一维模型的讨论2 3 1㊀«计算规程»中纳污能力计算方法㊀河段污染物浓度按式(A.3)计算:cx=c0exp(-Kxu)(A.3)式中:cx为流经x距离后的污染物浓度ꎬmg/Lꎻx为沿河段的纵向距离ꎬmꎻu为河道断面平均流速ꎬm/sꎮ相应水域纳污能力按式(A.4)计算:M=(cs-cx)(Q+Qp)(A.4)入河排污口位于计算河段的中部时(即x=L/2时ꎬL为计算河段的长度)ꎬ水功能区下断面的污染物浓度及其相应的水域纳污能力按式(A.5)和(A.6)计算:cx=L=c0exp(-KLu)+mQexp(-KLu)(A.5)M=(cs-cx=L)(Q+Qp)(A.6)2 3 2㊀修改建议㊀由于式(A.3)中的c0是指排污口完全混合断面的浓度ꎬ与«计算规程»中功能区初始断面浓度不是同一个概念ꎬ建议采用另一符号表示ꎬ如cᶄ0ꎮ式(A.3)可以修改为:cx=cᶄ0exp(-Kxu)(B.3)式中:cᶄ0为排污口完全混合断面浓度ꎬmg/Lꎻx为沿河段距排污口的纵向距离ꎬmꎮ式(A.4)存在问题前面已经分析过ꎮ公式(A.5)存在错误ꎬ建议修改为式(B.4):cx=L=QQ+Qpc0exp(-KLu)+mQ+Qpexp(-KL2u)(B.4)若忽略Qpꎬ公式简化为:cx=L=c0exp(-KLu)+mQexp(-KL2u)(B.5)按照功能区末断面达标的要求ꎬ推导出水域纳污能力按式(B.6)计算:M=(cs-QQ+Qpc0exp(-KLu))exp(KL2u) (Q+Qp)-m(B.6)若忽略Qpꎬ公式简化为:M=(cs-c0exp(-KLu))exp(KL2u)Q-m(B.7)2 4㊀关于河流二维模型的讨论2 4 1㊀«计算规程»中纳污能力计算方法㊀对于顺直河段ꎬ忽略横向流速及纵向离散作用ꎬ且污染物岸边排放且不随时间变化时ꎬ二维对流扩散方程为式(A.7):u∂C∂x=∂∂y(Ey∂C∂y)-KC(A.7)式中:Ey为污染物的横向扩散系数ꎬm3/sꎻy为计算点到岸边的横向距离ꎬmꎮ忽略污水流量的影响ꎬ式(A.7)的解析解按式(A.8)计算:c(xꎬy)=c0+mhπEyxuexp-vy24Eyxæèçöø÷æèçöø÷exp-Kxvæèçöø÷(A.8)式中:c(xꎬy)为计算点污染物垂线平均浓度ꎬmg/Lꎻh为水深ꎬmꎮ以岸边污染物浓度作为下游控制断面的控制浓度时ꎬ即y=0ꎬ岸边污染物浓度按式(A.9)计算:36㊀环境保护科学第44卷㊀c(xꎬ0)=(c0+m/hπEyxv)exp(-Kx/v)(A.9)相应的水域纳污能力按式(A.10)或式(A.11)计算:M=(cs-c(xꎬy))Q(A.10)当y=0时ꎬM=(cs-c(xꎬ0))Q(A.11)2 4 2㊀修改建议㊀式(A.8)和式(A.9)中的v和式(A.7)中的u是同一物理量ꎬ均为计算河道的纵向平均流速ꎬ故应统一用u来表示ꎮc0用cᶄ0代替ꎬ表示排污口处断面浓度ꎮ式(A.8)㊁(A.9)建议修改为式(B.8)和(B.9)ꎮc(xꎬy)=cᶄ0+mhπEyxuexp-uy24Eyxæèçöø÷æèçöø÷exp-Kxuæèçöø÷(B.8)c(xꎬ0)=cᶄ0+mhπEyxuæèçöø÷exp-Kxuæèçöø÷(B.9)同样依据功能区末断面达标推导水域纳污能力计算公式ꎬ将入河排污口概化为计算河段的中部(即x=L/2)时ꎬ水域纳污能力计算公式为:M=(csexp(KL2u)-c0exp(-KL2u))ˑhπEyLu/2-m(B.10)3㊀算例某水域功能区河段长10kmꎬ水面宽400mꎬ水深1mꎬ河流设计流量为20m3/sꎬ功能区划为«地表水质量标准»(GB3838-88)中的Ⅲ类水ꎬ相应的COD水质标准为8mg/Lꎬ上游为饮用水功能区ꎬ相应的COD水质标准为6mg/Lꎬ下游为农业用水区ꎬCOD的自净系数为0 1d-1ꎬ功能区污水流量为0 1m3/sꎬ污染物浓度为100mg/Lꎮ排污口概化在河段中部ꎬ分别用«计算规程»中的计算模型和文中提出修改后的计算模型其纳污能力ꎮ横向扩散系数根据经验公式估算为0 7m2/sꎬ两类方法在3种不同的模型下所得的纳污能力见表1ꎮ表1㊀纳污能力计算值计算模型水域纳污能力/g s-1«计算规程»中的计算模型修改后的模型零维100 2127 8一维117 6123 1二维120 4186 5㊀㊀由表1可知ꎬ采用文中修改后的方法计算得到的纳污能力略大于用«计算规程»中方法计算得的结果ꎬ这是由于前者充分考虑了自净能力ꎬ而后者没有考虑或未充分考虑水体的自净能力ꎮ4㊀结论针对«计算规程»中的河流计算模型存在的未充分考虑污染物自净能力㊁物理意义不明确的问题ꎬ采用总体达标法和控制断面达标法推导了改进的河流纳污能力计算模型ꎬ提出了相应的修改建议ꎮ算例计算结果表明ꎬ改进后的计算模型由于充分考虑了水体自净能力ꎬ计算结果略大于依据«计算规程»的计算结果ꎮ相对于原模型ꎬ计算结果更科学㊁物理意义更明确ꎬ为水域纳污能力计算规程的进一步修订提供参考ꎮ参考文献[1]赵㊀鑫ꎬ黄㊀茁ꎬ李青云.我国现行水域纳污能力计算方法的思考[J].中国水利ꎬ2012(1):29-32.[2]梁㊀英ꎬ唐㊀扬ꎬ吴娅明ꎬ等.基于MIKE11的苏南运河镇江至无锡段水环境容量计算与污染物削减模型研究[J].污染防治技术ꎬ2016ꎬ29(3):5-9.[3]周孝德ꎬ郭瑾珑ꎬ程㊀文ꎬ等.水环境容量计算方法研究[J].西安理工大学学报ꎬ1999ꎬ15(3):1-6.[4]路㊀雨ꎬ苏保林.河流纳污能力计算方法比较[J].水资源保护ꎬ2011ꎬ27(4):5-9.[5]FangXiaoboꎬZhangJianyingꎬMeiChengxiaoꎬetal.Theassimilativeca ̄pacityofQiantangRiverwatershedꎬChina[J].WaterandEnvironmentJournalꎬ2014ꎬ28(2):192-202.[6]孙昊元ꎬ李昊宸ꎬ缪国斌.南京市内秦淮河中段水环境容量的计算与研究[J].江苏水利ꎬ2012(9):34-36.[7]吴慧秀.无排污资料感潮河段纳污能力一维模型推导研究[J].辽东学院学报(自然科学版)ꎬ2016ꎬ23(2):108-110.[8]向㊀军.柳州市柳江纳污能力计算[J].人民珠江ꎬ2006(4):51-53.[9]马㊀欢.松花江哈尔滨段水环境容量研究[D].哈尔滨:哈尔滨工业大学ꎬ2006.[10]王胜艳ꎬ王为攀ꎬ黄㊀勇.长江泰州段水域纳污能力研究分析[J].水资源开发与管理ꎬ2017ꎬ2(9):29-32.[11]WangFeierꎬLiYananꎬYangJiaꎬetal.ApplicationofWASPmodelandGinicoefficientintotalmasscontrolofwaterpollutants:acasestudyinXichengCanalꎬChina[J].DesalinationandWaterTreat ̄mentꎬ2016ꎬ57(7):2903-2916.[12]罗慧萍ꎬ逄㊀勇ꎬ徐心彤.江苏省太湖流域水功能区纳污能力及限制排污总量研究[J].环境工程学报ꎬ2015ꎬ9(4):1559-1564.。
河流纳污能力计算与水环境治理关键技术发表时间:2018-12-12T17:00:40.813Z 来源:《基层建设》2018年第29期作者:赵清虎[导读] 水环境是指自然界中水的形成、分布和转化所处空间的环境。
河南省鹤壁水文水资源勘测局河南鹤壁 458030水环境是指自然界中水的形成、分布和转化所处空间的环境。
是指围绕人群空间及可直接或间接影响人类生活和发展的水体,其正常功能的各种自然因素和有关的社会因素的总称。
水环境是乐在水边,宜居在水边。
水环境是有限的纳污,无意识、无概念的任意排污带来的必然是水环境的破坏。
当我们不再将水环境视作无所顾忌的纳污体时,我们就是从思想上慢慢开始重视水环境。
随着人口的不断增长和经济社会的快速发展,河流水“脏”问题已经变得日趋严重,河流生态遭到破坏,水体水质恶化,河流水环境亟待治理。
主要研究内容包括:河流基本资料的调查、排污口污染物的确定、河流纳污能力的计算及水环境治理的关键技术等。
一、河流基本资料。
河流基本资料应包括水文资料、水质资料、入河排污口资料、旁侧出、入流资料及河道断面资料等。
水文资料包括计算河段的流量、流速、比降、水位等。
资料应能满足设计水文条件及数学模型参数的计算要求。
水质资料包括计算河段内各水功能区的水质现状、水质目标等。
资料应能反映计算河段主要污染物,又能满足计算水域纳污能力对水质参数的要求。
入河排污口资料包括计算河段内入河排污口分布、排放量、污染物浓度、排放方式、排放规律以及入河排污口所对应的污染源等。
旁侧出、入流资料包括计算河段内旁侧出、入流的位置、水量、污染物种类及浓度等。
河道断面资料包括计算河段的横断面和纵剖面资料。
资料应能反映计算河段河道简易地形现状。
基本资料应出自有相关资质的单位。
当相关资料不能满足计算要求时,可通过扩大调查收集范围和现场监测获取。
二、污染物的确定。
污染物的确定应根据流域或区域规划要求,应以规划管理目标所确定的污染物作为计算河段水域纳污能力的污染物。