交通标志牌结构验算
- 格式:docx
- 大小:22.93 KB
- 文档页数:17
悬臂式标志牌结构设计计算书1 设计资料1.1 板面数据板面高度:H = 2.00(m)板面宽度:W = 8.00(m)板面单位重量:W1 = 13.26(kg/m^2)1.2 横梁数据边长:0.18(m)横梁长度:L = 7.8(m)横梁壁厚:T = 0.008(m)横梁间距:D1 = 1.0(m)横梁单位重量:W1 = 45.22(kg/m)1.3 立柱数据边长: 0.35(m)立柱高度:L = 7.40(m)立柱壁厚:T = 0.014(m)立柱单位重量:W1 = 153.86(kg/m)2 荷载计算2.1 永久荷载各计算式中系数1.1系考虑有关连接件及加劲肋等的重量而添加。
2.1.1 板面重量计算标志版单位重量为13.26(kg/m2)标志版重量:G1 = 13.26×16×9.8×1.1(N) = 2.2871(KN)2.1.2 横梁重量计算G2 = 2×45.22×7.8×9.8×1.1(N) = 7.6046(KN)2.1.3 立柱重量计算G3 = 153.86×7.8×9.8×1.1(N) = 12.9372(KN)2.1.4 计算上部总重量G = G1 + G2 + G3 = 22.8289(KN)3 风荷载计算3.1 标志版风力F1 = βz×μs×μz×ω0×(W ×H)= 12.944(KN)3.2 立柱风力F2 =βz×μs×μz×ω0×(W ×H)= 2.096(KN)4 横梁设计计算说明:由于单根横梁材料、规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载的一半。
对单根横梁所受荷载计算如下:4.1 荷载计算竖直荷载G4 = γ0×γG×G1 / 2 = 1.372(KN)均布荷载ω1 = γ0×γG×G2 / (2 ×H) = 0.585(KN/m)水平荷载F wb = F1 / 2 =6.472(KN)4.2 强度验算计算横梁跟部由重力引起的剪力Q y1 = G4+ ω1 ×H = 5.935(KN)计算由重力引起的弯矩M y1 = G4×(l2 + l3) + ω1 ×l12 / 2 = 45.393(KN*m)计算横梁跟部由风力引起的剪力Q x1 = F1 = 6.472(KN)计算由风力引起的弯矩M x1 = F1×(l2 + l3) = 30.0948(KN*m)4.3 横梁截面信息横梁截面积 A = 5.504 ×10-3 (m2)横梁截面惯性矩I = 2.72 ×10-5 (m4)横梁截面模量W = 3.02 ×10-4(m3)4.4 计算横梁跟部所受的合成剪力和弯矩合成剪力:Q = (Q x12 + Q y12) 0.5 =8.781 (KN)合成弯矩:M = (M x12 + M y12) 0.5 = 54.463 (KN*m)4.5 最大正应力验算横梁根部的最大正应力为:σ= M / W = 170.939 (MPa) < [σ] = 215.000(MPa), 满足设计要求横梁根部的最大剪应力为:τ= 2 ×Q / A = 3.846 (MPa) < [τ] = 125.000(MPa), 满足设计要求4.5 变形验算计算垂直绕度f y = G4 / (γ0×γG) ×(l2 + l3)2×(3 ×l1 - l2 - l3) / (6 ×E ×I) + ω1 / (γ0×γG) ×l14 / (8 ×E ×I)= 0.0518(m)计算水平绕度f x = F wb/ (γ0×γQ) ×(l3 + l2)2×(3 ×l1 - l2 - l3) / (6 ×E ×I) + ω2 / (γ0×γQ) ×l23 / (6 ×E ×I)= 0.0707(m)计算合成绕度f = (f x2 + f y2)0.5 = 0.0877(m)f/l1 = 0.0117 > 1/100, 不满足设计要求。
悬臂式标志的结构设计计算1.计算简图如下图所示2.荷载计算 (1) 永久荷载各计算式中系数1.1系考虑有关连接件及加劲肋等的重力而添加的。
标志板单位面积质量为8.037kg/m 2,其重力为: G 1=4.4⨯2.4⨯8.037⨯9.8⨯1.1=0.9149(kN)横梁拟采用0.62032⨯Φ钢管,单位面积质量为29.15kg/m 2,其总重力为: G 2=2⨯29.15⨯5.076⨯9.8⨯1.1=3.1901(kN)立柱拟采用0.9377⨯Φ钢管,单位面积质量为81.68kg/m 2,其总重为: G 3=81.68⨯7.9⨯9.8⨯1.1=6.956(kN) 标志上部结构的总重力为:G=G 1+G 2+G 3=0.9149+3.1901+6.956=11.061(kN)有关系数将视永久荷载效应对结构构件或连接的承重能力是否有利而选取。
(2)风荷载 标志板:211101()()/100021.0 1.4[(0.5 1.2258 1.240^2)(4.42.4)]/100017.397()wb Q b h F CV W W KN γγρ=⨯=⨯⨯⨯⨯⨯⨯⨯= 横梁:2101()()/1000211.0 1.4( 1.22580.840^2)(0.6760.2032)/100020.301()Q WH B hni F CV W H KN γγρ=⨯⎡⎤=⨯⨯⨯⨯⨯⨯⨯⨯⎢⎥⎣⎦=∑立柱:21101[()()/100021.0 1.4[(0.5 1.22580.840^2)(7.90.377)]/10003.271()WP Q p P F CV W H KN γγρ=⨯=⨯⨯⨯⨯⨯⨯⨯=3.横梁的设计计算由于两根横梁材料,规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载之半,其受力如图6.2。
图6.2 横梁受力图(尺寸单位:mm )单根横梁所承受荷载为:()()1402100.9151.0 1.20.549223.190/ 1.0 1.2/5.0760.377/22GG h G G kN G w H kN m γγγγ==⨯⨯===⨯⨯=水平荷载:()()()()121117.39738.69922/20.301/20.6760.223/wb wb wh hn F F kN w F H kN m ====⨯=⨯=(1)强度验算:横梁根部由重力引起的剪力为:()1410.5490.377 5.076 2.463y h Q G w H kN =+=+⨯=由重力引起的弯矩为:()()()221114230.3770.5490.676 2.2 5.076 6.43622y w l M G l l kN m =++=⨯++⨯=⋅横梁根部由风引起的剪力为:()1228.6990.2230.6768.850x wb Q F w l kN =+=+⨯=由风荷载引起的弯矩为:()()()22221230.2230.6768.6990.676 2.225.06922x wb w l M F l l kN m ⨯=++=⨯++=⋅横梁规格为203 6.0φ⨯,截面积为A=323.71310m -⨯,截面惯性矩为541.80310I m -=⨯,抗弯截面模量为431.77610W m -=⨯横梁根部所受的合成剪力为:()9.186Q kN ==合成弯矩为:()25.882M kN m ==⋅a.最大正应力验算横梁根部的最大正应力为:()()322max 425.88210145.7/ 1.15215247/1.77610M N mm f N mm W σγ-⨯===<⋅=⨯=⨯ b.最大剪应力验算()()322max 39.1861022 4.948/125/3.71310v Q N mm f N mm A τ-⨯=⨯=⨯=<=⨯ c.危险点应力验算 略。
原标志牌结构验算- 结构理论悬臂式标志版结构设计计算书1设计资料1.1板面数据板面高度:H=3.00(m)板面宽度:W=6.00(m)板面单位重量:W1=13.26(kg/m )1.2横梁数据八角钢:边长=0.08(m)横梁长度:L=1.50(7.5)(m)横梁壁厚:T=0.008(m)横梁间距:D1=1.50(m)立柱单位重量:W1=38.70(kg/m)1.3立柱数据八角钢:边长=0.12(m)立柱高度:L=8.60(m)立柱壁厚:T=0.01(m)立柱单位重量:W1=73.10(kg/m)2荷载计算2.1永久荷载各计算式中系数1.1系考虑有关连接件及加劲肋等的重量而添加。
2.1.1板面重量计算标志版单位重量为13.26(kg/m2)标志版重量:G1=13.26×18×9.8×1.1(N)=2.5722(KN)2.1.2横梁重量计算G2=2×38.7×7.5×9.8×1.1(N)=6.2578(KN)2.1.3立柱重量计算G3=73.1×8.6×9.8×1.1(N)=6.7770(KN)2.1.4计算上部总重量G=G1+G2+G3=15606.94(N)=15.608(KN)3风荷载计算3.1标志版风力F1=γ0×γQ×(1/2×ρ×C×V2)×(W×H)/1000=15.266(KN)3.2横梁风力F2=γ0×γQ×(1/2×ρ×C×V2)×Σ(W×H)/1000=0.355(KN)3.3立柱风力F3=γ0×γQ×(1/2×ρ×C×V2)×(W×H)/1000=1.527(KN)4横梁设计计算说明:由于单根横梁材料、规格相同,根据基本假设,可人为每根横梁所受的荷载为总荷载的一半。
悬臂式标志版结构设计计算书1 设计资料1.1 板面数据板面高度:H = 3.00(m)板面宽度:W = 6.00(m)板面单位重量:W1 = 13.26(kg/m^2)1.2 横梁数据八角钢:边长= 0.08(m)横梁长度:L = 1.50(7.5)(m)横梁壁厚:T = 0.008(m)横梁间距:D1 = 1.50(m)立柱单位重量:W1 = 38.70(kg/m)1.3 立柱数据八角钢:边长= 0.12(m)立柱高度:L = 8.60(m)立柱壁厚:T = 0.01(m)立柱单位重量:W1 = 73.10(kg/m)2 荷载计算2.1 永久荷载各计算式中系数1.1系考虑有关连接件及加劲肋等的重量而添加。
2.1.1 板面重量计算标志版单位重量为13.26(kg/m2)标志版重量:G1 = 13.26×18×9.8×1.1(N) = 2.5722(KN)2.1.2 横梁重量计算G2 = 2×38.7×7.5×9.8×1.1(N) = 6.2578(KN)2.1.3 立柱重量计算G3 = 73.1×8.6×9.8×1.1(N) = 6.7770(KN)2.1.4 计算上部总重量G = G1 + G2 + G3 = 15606.94(N) = 15.608(KN)3 风荷载计算3.1 标志版风力F1 = γ0×γQ×(1/2 ×ρ×C ×V2) ×(W ×H) / 1000= 15.266(KN)3.2 横梁风力F2 = γ0×γQ×(1/2 ×ρ×C ×V2) ×Σ(W ×H) / 1000= 0.355(KN)3.3 立柱风力F3 = γ0×γQ×(1/2 ×ρ×C ×V2) ×(W ×H) / 1000= 1.527(KN)4 横梁设计计算说明:由于单根横梁材料、规格相同,根据基本假设,可人为每根横梁所受的荷载为总荷载的一半。
交通标志结构计算书1 设计资料1.1 板面数据1)标志板A数据板面形状:矩形,宽度W=3.3(m),高度h=2.2(m),净空H=5.5(m)标志板材料:LF2-M铝。
单位面积重量:8.10(kg/m^2)2)附着板A数据板面形状:圆形,直径D=1.2(m),净空H=6.0(m)标志板材料:LF2-M铝。
单位面积重量:8.10(kg/m^2)1.2 横梁数据横梁的总长度:5.48(m),外径:152(mm),壁厚:8(mm),横梁数目:2,间距:1.45(m) 1.3 立柱数据立柱的总高度:8.2(m),立柱外径:377(mm),立柱壁厚:10(mm)2 计算简图见Dwg图纸3 荷载计算3.1 永久荷载1)标志版重量计算标志板A重量:G1=A*ρ*g=7.26×8.10×9.80=576.299(N)附着板A重量:G1=A*ρ*g=1.131×8.10×9.80=89.777(N)式中:A----标志板面积ρ----标志板单位面积重量g----重力加速度,取9.80(m/s^2)则标志板总重量:Gb=ΣGi=666.075(N)2)横梁重量计算横梁数目2,总长度为5.48(m),使用材料:奥氏体不锈钢无缝钢管,单位长度重量:28.839(kg/m)横梁总重量:Gh=L*ρ*g*n=5.48×28.839×9.80×2=3096.698(N)式中:L----横梁的总长度ρ----横梁单位长度重量g----重力加速度,取9.80(m/s^2)3)立柱重量计算立柱总长度为8.20(m),使用材料:奥氏体不锈钢无缝钢管,单位长度重量:91.874(kg/m) 立柱重量:Gp=L*ρ*g=8.20×91.874×9.80=7382.995(N)式中:L----立柱的总长度ρ----立柱单位长度重量g----重力加速度,取9.80(m/s^2)4)上部结构总重量计算由标志上部永久荷载计算系数1.10,则上部结构总重量:G=K*(Gb+Gh+Gp)=1.10×(666.075+3096.698+7382.995)=12260.345(N)3.2 风荷载1)标志板所受风荷载标志板A:Fwb1=γ0*γQ*[(1/2*ρ*C*V^2)*A1]=1.0×1.4×[(0.5×1.2258×1.2×25.547^2)×7.26]=4878.826(N)附着板A:Fwb2=γ0*γQ*[(1/2*ρ*C*V^2)*A2]=1.0×1.4×[(0.5×1.2258×1.2×25.547^2)×1.131]=760.031(N)式中:γ0----结构重要性系数,取1.0γQ----可变荷载分项系数,取1.4ρ----空气密度,一般取1.2258(N*S^2*m^-4)C----标志板的风力系数,取值1.20V----风速,此处风速为25.547(m/s^2)g----重力加速度,取9.80(m/s^2)2)横梁所迎风面所受风荷载:Fwh=γ0*γQ*[(1/2*ρ*C*V^2)*W*H]=1.0×1.4×[(0.5×1.2258×0.80×25.547^2)×0.152×1.711]=116.54 9(N)式中:C----立柱的风力系数,圆管型取值0.80W----横梁迎风面宽度,即横梁的外径H----横梁迎风面长度,应扣除被标志板遮挡部分3)立柱迎风面所受风荷载:Fwp=γ0*γQ*[(1/2*ρ*C*V^2)*W*H]=1.0×1.4×[(0.5×1.2258×0.80×25.547^2)×0.377×7.00]=1182.29 8(N)式中:C----立柱的风力系数,圆管型立柱取值0.80W----立柱迎风面宽度,即立柱的外径H----立柱迎风面高度4 横梁的设计计算由于两根横梁材料、规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载的一半。
交通标志牌结构验算交通标志牌的结构设计包括标志牌面板、支撑结构和连接方式等几个方面。
首先,标志牌面板需要满足一定的强度和刚度要求,以承受外部荷载和抵抗风力。
标志牌面板常用的材料有铝合金、钢板和聚碳酸酯等。
在设计时需要考虑标志牌面板的材料强度和刚度参数,并根据实际情况确定标志牌面板的厚度和尺寸。
其次,支撑结构是保证标志牌能够稳定固定在指定位置的关键。
一般来说,交通标志牌的支撑结构采用立柱或梁柱结构,材料有钢管、钢杆或铝合金型材等。
在设计支撑结构时,需要考虑其稳定性和强度,以及与标志牌面板之间的连接方式和受力情况。
连接方式是指标志牌面板和支撑结构之间的连接方式。
常用的连接方式有焊接、螺栓连接、铆接等。
在选择连接方式时,需要综合考虑连接强度、工艺难易性和经济性等因素。
交通标志牌结构的验算主要包括静态通风性验算、动态通风性验算和抗风性验算等几个方面。
静态通风性验算是指对标志牌面板的设计进行空气动力学分析,确定标志牌面板所受到的气动力荷载,并进行强度和刚度验算。
动态通风性验算是指对在交通流量较大的情况下,标志牌面板受到的振动和共振的影响进行分析,以确定标志牌在实际使用条件下的稳定性和安全性。
抗风性验算是指对标志牌的整体结构进行分析,以确定其能够承受的最大风力荷载,并通过结构分析和强度验算来保证标志牌的稳定性和安全性。
在进行交通标志牌结构验算时,需要根据相应的设计规范和标准来进行,例如《交通标志标线设计规范》(GB5768-2024)和《公路交通设施设计规范》(JTGB01-2024)。
同时,还需要利用现代计算机辅助设计软件和有限元分析软件等工具进行结构分析和验算,以提高计算效率和准确性。
综上所述,交通标志牌的结构设计和验算是确保标志牌符合设计要求和安全性要求的重要环节,需要综合考虑材料强度和刚度、支撑结构稳定性、连接方式和受力情况等因素,在实际设计中遵循相关规范和标准,并辅以现代计算机辅助设计软件和有限元分析软件等工具进行分析和验算。
悬臂式标志牌结构设计计算书1设计资料1.1板面数据板面高度:H = 2.00(m)板面宽度:W = 8.00(m)板面单位重量:W1 = 13.26(kg/m^2)边长:0.18(m)横梁长度:L = 7.8(m)横梁壁厚:T = 0.008(m)横梁间距:D1 = 1.0(m)横梁单位重量:W1 = 45.22(kg/m)1.3立柱数据边长: 0.35(m)立柱高度:L = 7.40(m)立柱壁厚:T = 0.014(m)立柱单位重量:W1 = 153.86(kg/m)2荷载计算2.1永久荷载各计算式中系数 1.1 系考虑有关连接件及加劲肋等的重量而添加。
2.1.1板面重量计算标志版单位重量为13.26(kg/m 2)标志版重量:G1 = 13.26× 16× 9.8× 1.1(N) = 2.2871(KN)2.1.2横梁重量计算G2 = 2× 45.22× 7.8× 9.8× 1.1(N) = 7.6046(KN)2.1.3立柱重量计算G3 = 153.86× 7.8× 9.8× 1.1(N) = 12.9372(KN)G = G1 + G2 + G3 = 22.8289(KN)3风荷载计算3.1标志版风力F1 = βz × μs × μz ×ω 0× (W × H)= 12.944(KN)3.2立柱风力F2 = βz × μs × μz ×ω 0× (W × H)= 2.096(KN)4横梁设计计算说明:由于单根横梁材料、规格相同,根据基本假设,可认为每根横梁所受的荷载为总荷载的一半。
对单根横梁所受荷载计算如下:4.1荷载计算竖直荷载G4 = γ 0 × γ G × G1 / 2 = 1.372(KN)均布荷载ω1 = γ 0 × γ G × G2 / (2 × H) = 0.585(KN/m)水平荷载F wb = F1 / 2 =6.472(KN)4.2强度验算计算横梁跟部由重力引起的剪力Q y1 = G4 + ω1 × H = 5.935(KN)计算由重力引起的弯矩M y1 = G4 × (l2 + l3) + ω1 × l12 / 2 = 45.393(KN*m)计算横梁跟部由风力引起的剪力Q x1 = F1 = 6.472(KN)计算由风力引起的弯矩M x1 = F1 × (l2 + l3) = 30.0948(KN*m)4.3横梁截面信息横梁截面积 A = 5.504 × 10-3 (m2)横梁截面惯性矩I = 2.72 × 10-5 (m4)横梁截面模量W = 3.02 × 10-4(m3)4.4计算横梁跟部所受的合成剪力和弯矩合成剪力:Q = (Q x12+ Q y12)0.5 =8.781 (KN)合成弯矩:M = (M x12 + M y12) 0.5 = 54.463 (KN*m)4.5最大正应力验算横梁根部的最大正应力为:σ = M / W = 170.939 (MPa) < [ σ] = 215.000(MPa),满足设计要求横梁根部的最大剪应力为:τ = 2 × Q / A = 3.846 (MPa) < [ τ ] =125.000(MPa), 满足设计要求4.6变形验算计算垂直绕度f y= G4 / (γ 0 × γ G) × (l2 + l3)2× (3 × l1 - l2 - l3) /(6 × E × I) + ω1 / (γ 0× γ G) × l14 / (8 × E × I)= 0.0518(m)计算水平绕度f x = F wb / (γ 0 × γ Q) × (l3 + l2)2× (3 × l1 - l2 - l3) /(6 × E × I) + ω2 / (γ 0× γ Q) × l23 / (6 × E × I)= 0.0707(m)计算合成绕度f = (f x2 + f y2)0.5 = 0.0877(m)f/l1 = 0.0117 > 1/100, 不满足设计要求。
5立柱设计计算对立柱所受荷载计算如下:5.1荷载计算垂直荷载:N= γ 0 × γ G × G = 18.729(KN)水平荷载:H= F1+F2+F3 = 17.148(KN)水平弯矩:M X=(F1+F2)× (L-H/2)+F3 ×L/2 = 123.722(KN*m)立柱根部由永久荷载引起的弯矩为:M Y=2 × M y1 = 42.054(KN*m)合成弯矩:M=(M X2+M Y2)0.5 = 130.674(KN*m)风载引起的合成扭矩:M t=2×M x1 = 68.964(KN*m)5.2强度验算立柱截面信息立柱截面积: A = 9.269 × 10-3 (m2)立柱截面惯性矩:I = 9.594 × 10-5 (m4)立柱截面模量:W = 6.617 × 10-4 (m3)立柱截面回转半径模量:R = (I/A) 0.5 = 0.102(m)立柱截面惯性矩模量:Ip = 2 × I = 1.92 × 10-4(m4)最大正应力验算轴向荷载引起的正应力:σ c=N/A = 2.021(MPa)弯矩引起的正应力:σw= M/W = 197.496(MPa)组合应力:σMax = σc+σw = 199.516(MPa)立柱根部的最大正应力为:σ = M / W = 197.496 (MPa) < [ σ] = 215.000(MPa), 满足设计要求最大剪应力验算水平荷载引起的剪应力:τ Hmax=2× H/A = 3.70(MPa)扭矩引起的剪应力:τ tMax= M t×φ /(2× I p) = 56.428(MPa)组合应力:τ Max = τ Hmax+ τ tmax = 60.128(MPa) < [τ ] =125.000(MPa), 满足设计要,危险点处应力验算最大正应力位置点处,由扭矩产生的剪应力亦为最大,即σ = σ Max = 199.516 (MPa) ,τ = τ tMax = 56.428(MPa)根据第四强度理论的组合应力为:σ4 = = (σ2+3×τ 2)0.5=207.432 (MPa) < [ σ] =215.000(MPa), 满足设计要求变形验算由风荷载标准值引起的立柱顶部的水平位移:23f p =(F1+F2)×(L-H/2)2×(3×L-H)/(γ 0 × γ Q× 6× E×I)+F3× L3/(γ 0 × γ Q×8×E×I)= 0.1012(m)立柱端部的相对水平位移为:f p/L = 0.0127 >1/100, 不满足设计要求立柱顶部扭转角:θ =M t×h/(γ 0 × γ Q× GI p) = 2.79×10-2(rad)标志结构最大总水平水平位移:f =f x+f p+θ×l1 = 0.382(m)标志结构最大相对水平位移为:f p/L = 0.0477 >1/60, 不满足设计要求6立柱与横梁的连接计算6.1螺栓强度验算连接螺栓拟采用高强螺栓6 M 20 , 查表得:单个螺栓受拉承载力设计值N tb = 124 KN , 受剪(单剪)承载力设计值N vb = 55.8KN :合成剪力Q = 9.438 KN , 合成弯距=40.388KN*m :螺栓孔数目 6 :每个螺栓所受的剪力N v = 1.573 KN ,螺栓1 : y1=0.190(m)螺栓2 : y2=0.190(m)螺栓3 : y3=0.00(m)螺栓4 : y4=0.00(m) 螺栓5 : y5=-0.190(m)由各y 值可见,y1 距旋转轴的距离最远,其拉力N max=M b×y1/(∑yi2)=53.289KN< N tb= 124(MPa), 满足设计要求0.9n fμ( nP-1.25∑ N ti) =0.9×1×0.4( 6× 155-1.25×53.289×2+1.25×53.289× 2) =338.4KN>Q=9.438KN, 满足设计要求7柱脚强度验算7.1受力情况铅垂力G= γ 0×γ G×G=1.00×0.90×15.608 = 14.047(kN)水平力F=17.148(kN)合成弯距M=130.674(kN)扭距M=68.964(kN)7.2底板法兰盘受压区的长度X n偏心距e=M/G=130.674/14.047=9.303(m)法兰盘几何尺寸:L=0.800(m) ; B=0.800(m) ; Lt=0.120(m)基础采用C25 砼,n=E s/E c=210000.00×106/28000.00× 106 = 7.5地脚螺栓拟采用8 M 30 高强螺栓受拉地脚螺栓的总面积:A e = 3 × 5.606× e-4= 16.818×10-4(m2)受压区的长度Xn 根据下式试算求解:X n3 + 3×(e-L/2)×X n2–6×n×A e×(e+L/2-L t)×(L-L t-X n) = 0 式中: e = 3.13(m)L = 0.80(m)B = 0.80(m)n = 7.5A e = 16.82 × 10-4(m2)L t = 0.12(m)求解该方程,得X n = 0.1227(m)7.3底板法兰盘下的混凝土最大受压应力σc = 2 × G × (e + L/2 - L t) / (B × X n × (L - L t -X n/3))= 5.351(MPa) < β× f cc = 10.02(MPa), 满足设计要求。