暑假第二讲—等差数列进阶
- 格式:pdf
- 大小:80.71 KB
- 文档页数:2
等差数列1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的 前一项的都等于同一个 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,通常用字母d 表示,即 =d (n ∈N +,且n ≥2)或 =d (n ∈N +).2.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的____________.3.等差数列的通项公式若{a n }是等差数列,则其通项公式a n = .①{a n }成等差数列⇔ a n =pn +q ,其中p = ,q = ,点(n ,a n )是直线 上一群孤立的点.②单调性:d >0时,{a n }为 数列;d <0时,{a n }为 数列;d =0时,{a n }为 .4.等差数列的前n 项和公式(1)等差数列前n 项和公式S n = = .其推导方法是 .(2){a n }成等差数列,求S n 的最值:若a 1>0,d <0,且满足⎩⎨⎧+1n n a ,a 时,S n 最大; 若a 1<0,d >0,且满足⎩⎨⎧+ 1n n a ,a 时,S n 最小; 或利用二次函数求最值;或利用导数求最值.5.等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列;(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)通项公式法:a n =kn +b (k ,b 是常数)(n ∈N *)⇔{a n }是等差数列;(4)前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *)⇔{a n }是等差数列.6.等差数列的性质(1)a m -a n = d ,即d =a m -a n m -n . (2)在等差数列中,若p +q =m +n ,则有a p +a q =a m + ;若2m =p +q ,则有 a m=a p+a q(p,q,m,n∈N*).(3)若{a n},{b n}均为等差数列,且公差分别为d1,d2,则数列{pa n},{a n+q},{a n±b n}也为数列,且公差分别为,,.(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n,a n+m,a n+2m,…为等差数列,公差为md.(5)等差数列的前n项和为S n,则S n,S2n-S n,S3n-S2n,…为等差数列,公差为n2d.(6)若等差数列的项数为2n,则有S偶-S奇=nd,S奇S偶=a na n+1.(7){a n}为等差数列,S n为前n项和,则S2n-1=(2n-1)a n;{b n}为等差数列,S′n为前n项和,则S′2n-1=(2n-1)b n,a nb n=S2n-1S′2n-1.(8)等差数列{a n}前m项与后m项的和等于m(a1+a n).练习题1等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.42已知等差数列{a n}中,a2=7,a4=15,则其前10项的和为() A.100 B.210 C.380 D.4003等差数列{a n}中,S n是{a n}前n项和,已知S6=2,S9=5,则S3=()A.-1 B.-13 C.13D.14在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.5已知递增的等差数列{}a n满足a1=1,a3=a22-4,则a n=________.6.在等差数列{a n}中,(1)已知a15=33,a45=153,求a n;(2)已知a6=10,S5=5,求S n;7.已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;8.设数列{}a n ,{}b n 都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;9.若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;10.等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A .8B .12C .16D .2411.含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n12.设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于( )A .-65B .-35C .65D .3513.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A .-23B .-13C .13D .2314.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( )A.94B.32C.53 D .415.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .616.已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.17.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值;(2)求a 2+a 4+a 6+a 8+…+a 20的值.18 已知公差大于零的等差数列{a n}的前n项和为S n,且满足:a3·a4=117,a2+a5=22.(1)求通项a n;(2)若数列{b n}满足b n=S nn+c,是否存在非零实数c使得{b n}为等差数列?若存在,求出c的值;若不存在,请说明理由;(3)在(2)的条件下求数列{|101-b n|}的前n项和T n.等差数列1. 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的 前一项的都等于同一个 ,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,通常用字母d 表示,即 =d (n ∈N +,且n ≥2)或 =d (n ∈N +).2.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的____________.3.等差数列的通项公式若{a n }是等差数列,则其通项公式a n = .①{a n }成等差数列⇔ a n =pn +q ,其中p = ,q = ,点(n ,a n )是直线 上一群孤立的点.②单调性:d >0时,{a n }为 数列;d <0时,{a n }为 数列;d =0时,{a n }为 .4.等差数列的前n 项和公式(1)等差数列前n 项和公式S n = = .其推导方法是 .(2){a n }成等差数列,求S n 的最值:若a 1>0,d <0,且满足⎩⎨⎧+ 1n n a ,a 时,S n 最大; 若a 1<0,d >0,且满足⎩⎨⎧+1n n a ,a 时,S n 最小; 或利用二次函数求最值;或利用导数求最值.5.等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列;(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列;(3)通项公式法:a n =kn +b (k ,b 是常数)(n ∈N *)⇔{a n }是等差数列;(4)前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *)⇔{a n }是等差数列.6.等差数列的性质(1)a m -a n = d ,即d =a m -a n m -n . (2)在等差数列中,若p +q =m +n ,则有a p +a q =a m + ;若2m =p +q ,则有 a m =a p +a q (p ,q ,m ,n ∈N *).(3)若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为 数列,且公差分别为 , , .(4)在等差数列中,按序等距离取出若干项也构成一个等差数列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md .(5)等差数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…为等差数列,公差为n 2d .(6)若等差数列的项数为2n ,则有S 偶-S 奇=nd ,S 奇S 偶=a n a n +1. (7){a n }为等差数列,S n 为前n 项和,则S 2n -1=(2n -1)a n ;{b n }为等差数列,S ′n 为前n 项和,则S ′2n -1=(2n -1)b n ,a n b n =S 2n -1S ′2n -1. (8)等差数列{a n }前m 项与后m 项的和等于m (a 1+a n ).【答案】1.差 常数 公差 a n -a n -1 a n +1-a n2.等差中项3.a 1+(n -1)d ①d a 1-d y =dx +(a 1-d )②单调递增 单调递减 常数列4.(1)n (a 1+a n )2 na 1+n (n -1)d 2倒序相加法 (2)≥0 ≤0 ≤0 ≥06.(1)(m -n ) (2)a n 2(3)等差 pd 1 d 1 d 1±d 21 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4解:∵a 1+a 5=2a 3=10,∴a 3=5.又a 4=7,∴d =a 4-a 3=2.故选B .2 已知等差数列{a n }中,a 2=7,a 4=15,则其前10项的和为( )A .100B .210C .380D .400解:在等差数列{a n }中,∵a 2=7,a 4=15,∴d =a 4-a 22=4,a 1=a 2-d =3,∴S 10=10×3+10×92×4=210.故选B .3 等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 3=( )A .-1B .-13 C.13 D .14 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解:因为a 3+a 7=a 4+a 6=a 2+a 8=37,所以a 2+a 4+a 6+a 8=74,故填74.5 已知递增的等差数列{}a n 满足a 1=1,a 3=a 22-4,则a n =________.解:∵{}a n 是等差数列,a 1=1,a 3=a 22-4,∴1+2d =()1+d 2-4得d 2=4,又{}a n 是递增数列,∴d >0.∴d =2,a n =2n -1.故填2n -1.6.在等差数列{a n }中,(1)已知a 15=33,a 45=153,求a n ;(2)已知a 6=10,S 5=5,求S n ;解:(1)解法一:设首项为a 1,公差为d ,依条件得⎩⎨⎧33=a 1+14d ,153=a 1+44d , 解得⎩⎨⎧a 1=-23,d =4.∴a n =-23+(n -1)×4=4n -27.解法二:由d =a n -a m n -m ,得d =a 45-a 1545-15=153-3330=4, 由a n =a 15+(n -15)d ,得a n =4n -27.(2)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解得a 1=-5,d =3.∴S n =-5n +n (n -1)2·3=32n 2-132n .7.已知S n 为等差数列{a n }的前n 项和,a 6=100,则S 11=________;7.解:(1)S 11=11(a 1+a 11)2=11a 6=1100.故填1100. 8.设数列{}a n ,{}b n 都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________;8.因为数列{}a n ,{}b n 都是等差数列,所以数列{}a n +b n 也是等差数列.故由等差中项的性质,得()a 5+b 5+()a 1+b 1=2()a 3+b 3,即a 5+b 5+7=2×21,解得a 5+b 5=35.故填35.9.若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,则这个数列的项数为________;9.∵a 1+a 2+a 3+a 4=36,a n +a n -1+a n -2+a n -3=124,a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=160,即a 1+a n =40.∴S n =n (a 1+a n )2=20n =780,解得n =39.故填39.10.等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则a 9=( )A .8B .12C .16D .2410.解:在等差数列中,S 3=3a 2=6⇒a 2=2.∴3d =a 5-a 2=6⇒d =2.所以a 9=a 5+4d =16.故选C .11.含2n +1个项的等差数列其奇数项的和与偶数项的和(非零)之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n11.解:∵S 奇=a 1+a 3+a 5+…+a 2n +1=(n +1)(a 1+a 2n +1)2,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2,a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n .故选B .12.设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1等于() A .-65 B .-35 C .65 D .3512.解:由⎩⎨⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27 得⎩⎨⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.故选D .13.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( )A .-23B .-13C .13D .2313.解:a 10=a 1+9d =10,S 10=10(a 1+10)2=70,解得d =23.故选D .14.已知等差数列{a n }的前n 项和为S n ,且S 4S 2=4,则S 6S 4=( ) A.94 B.32 C.53 D .414.解:设S 2=x ,则S 4=4x ,因为S 2,S 4-S 2,S 6-S 4成等差数列,所以S 6-S 4=5x ,即S 6=9x ,所以S 6S 4=9x 4x =94.故选A . 15.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .615.解法一:a m =S m -S m -1=2,a m +1=S m +1-S m =3,公差d =a m +1-a m =3-2=1.又S m +1=(m +1)a 1+(m +1)m 2=3,①,a m +1=a 1+m =3.将a 1=3-m 代入①得m 2-5m =0,解得m =5或0(舍去).解法二:设S n =an 2+bn ,通过题意建立并解方程组获解.故选C .16.已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.解:∵S 2=a 3,∴a 1+a 2=a 3,又{a n }为等差数列.∴a 1+a 1+d =a 1+2d .∴d =a 1=12.∴a 2=a 1+d =1.S n =na 1+n (n -1)2d =14n (n +1).故填1;14n (n +1). 17.已知S n 为等差数列{a n }的前n 项和,a 1=25,a 4=16.(1)当n 为何值时,S n 取得最大值;(2)求a 2+a 4+a 6+a 8+…+a 20的值.18 已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)若数列{b n }满足b n =S n n +c ,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由;(3)在(2)的条件下求数列{|101-b n |}的前n 项和T n . 解:(1)由等差数列的性质得,a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,又公差大于零,即a 4>a 3,所以a 3=9,a 4=13. 易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n , 所以b n =S n n +c =2n 2-n n +c. 解法一:所以b 1=11+c ,b 2=62+c ,b 3=153+c(c ≠0). 令2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-n n -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.。
第二讲:等差数列、等比数列的通项公式【知识结构】1、等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d (与项数n无关),这个数列就叫做等差数列,这个常数就叫做等差数列的公差。
等差数列的递推公式为:即a n a n 1 d,n 2,n N (d为常数)/a ni a n d,n N /,这就是一个恒等式,数列中的恒等式一定要注意变量的范围,即项数n的范围。
a b2、等差中项:如果a,A,b成等差数列,那么A叫做a与b的等差中项,且A -2 3、等差数列的通项公式:a n a i (n 1)d dn 佝d)。
当d 0时,从函数的角度看,等差数列的通项公式是关于n的一次函数,它的图象是在一条直线的散点。
【典型例题】例1、(1)已知等差数列{a n}中,a12,公差为3,则通项公式a n3n 1。
(2)已知等差数列{a n}中,a2 3,a4 7,则通项公式a n2n1。
(3)已知等差数列{a n}中,2a2 a31,a7 a8 20 ,a k15,则k 10。
(4)在等差数列a n中,若a1 a4a$ a12 a15 2 则2。
解:⑶设a1,公差d 3a1 4d 12耳13d 20,解得[c3 a n 2nd 25k 10等差数列的通项公式的作用是把等差数列中的任意一项用首项和公差表示。
练习:P7自主练习中的1,2,3(2)(3)(4),4 。
例2、(1)a n 1a n2,n N*;(2)满足2a n 1a n 2 a n, n N * ;(3)a n 1a n n,n N *满足条件(2),数列{a n}是等差数列。
例3、两个数列1, x i , X 2,……,X 7, 5和1, y i , y 2,……,y 6, 5均成等差数列公差分别解:5 = 1+ 8d 1, d 1 = 1,又 5= 1 + 7d 2, d 22(2)证明: a n pn q(p,q 为常数)是等差数列,说明首项与公差。
第2讲 等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 考试要求项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.01聚焦必备知识知识梳理1.等差数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于__________________,那么这个数列就叫做等差数列.这个常数叫做等差数列的_________,符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=________,其中A 叫做a与b 的等差中项.2.等差数列的有关公式(1)通项公式:a n=______________________________.(2)前n项和公式:S n=__________________=______________.4.等差数列与函数的关系(1)等差数列{a n}的通项公式可写成a n=_____________,当d≠0时,它是关于n的_______________,它的图象是直线y=dx+(a1-d)上横坐标为正整数的均匀分布的一系列____________的点.拓展1.数列{a n }为等差数列的充要条件是a n =kn +b (k ,b ∈R ).2.若数列{a n }的前n 项和为S n ,则“数列{a n }为等差数列”的充要条件是“S n =an 2+bn (a ,b ∈R )”.3.在等差数列{a n }中,若a 1>0,d <0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)等差数列{a n }的单调性是由公差d 决定的.( )(2)等差数列的前n 项和公式是常数项为0的二次函数.( )(3)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( )(4)数列{a n }为等差数列的充要条件是∀n ∈N *,都有2a n +1=a n +a n +2.( )夯基诊断√×√√2.回源教材(1)已知在等差数列{a n }中,a 4+a 8=20,a 7=12,则a 4=________.答案:6由a4+a 8=2a 6=20,故a 6=10,故d =a 7-a 6=2,所以a 4=a 6-2d =6.(2)等差数列{a n }的前n 项和为S n ,且S 10=2,S 20=8,则S 30=_______.答案:18由于S10,S 20-S 10,S 30-S 20成等差数列,所以2×(8-2)=2+S 30-8,解得S 30=18.(3)等差数列{a n}的前n项和为S n,且S6=3(a5+3),a4=-1,则其公差d=____________.答案:-202突破核心命题例1 (1)(2023全国甲卷)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A.25B.22C.20D.15考 点 一等差数列基本量的运算C(2)(2024·重庆一诊)设等差数列{a n}的前n项和为S n,5S9=9a9-36,B则a4=( )A.-2B.-1C.1D.21.等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).2.确定等差数列通项公式的关键是求出两个最基本的量,即首项a 1和公差d .反思感悟训练1 (1)(2024·北京通州区期末)在等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,则a n =( )A.5n -16B.5n -11C.3n -8D.3n -5A(2)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影长之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一B百寸)( )A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸2等差数列的判定与证明判断数列{a n }是等差数列的常用方法(1)定义法.(2)等差中项法.(3)通项公式法.(4)前n 项和公式法.反思感悟训练2 已知在数列{a n}中,a1=1,a n=2a n-1+1(n≥2,n∈N*),记b n=log2(a n+1).(1)判断{b n}是否为等差数列,并说明理由;(2)求数列{a n}的通项公式.例3 (2024·湖北联考)已知{a n }是各项均为正数的等差数列,S n 为其前n 项和,且a 6+2a 7+a 10=20,则当a 7·a 8取最大值时,S 10=( )A.10B.20C.25D.50考 点 二等差数列性质的应用考向 1项的性质D例4 (2024·广州天河区期末)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层地面的中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且上、中、下三层共有扇面形石板(不含天心石)3402块,则中层共有扇面形石板( )A.1125块B.1134块C.1143块D.1152块2和的性质BB 记从中间向外每环扇面形石板数为{a n},则{a n}是等差数列,且公差d=9,a1=9.设每层有k环,则n=3k,S n=3402,{a n}是等差数列,则S k,S2k-S k,S3k-S2k也成等差数列,所以2(S2k-S k)=S k+(S3k-S2k),所以S n=3(S2k-S k)=3402,则S2k-S k=1134.3前n项和的最值例5 等差数列{a n}中,设S n为其前n项和,且a1>0,S3=S11,则当n 为多少时,S n 最大?1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1).(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.反思感悟3.求等差数列前n项和的最值,常用的方法:(1)邻项变号法,利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值.(2)函数法,利用公差不为零的等差数列的前n项和S n=An2+Bn(A≠0)为二次函数,通过二次函数的性质求最值.CC(3)(2024·河南名校第四次联考)在等差数列{a n }中,a 1-2a 2=6,S 3=-27,当S n 取得最小值时,n 的值为( )A.4或5 B.5或6C.4D.5A03限时规范训练(四十一)A 级 基础落实练1.(2024·河南名校联考)已知数列{a n }是各项均为正数的等差数列,a 5=10,且a 4·a 6=96,则公差为( )A.-2B.2C.-2或2D.4B B 设等差数列{a n }的公差为d ,∵a 4·a 6=(a 5-d )(a 5+d )=(10-d )(10+d )=96,∴d =2或d =-2,∵a n >0,∴d >0,∴d =2,故选B.2.(2023·咸阳质量检测)在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9=( )A.30B.40C.60D.80C C 由等差数列的性质可得a 2+2a 6+a 10=4a 6=120,所以a 6=30,所以a 3+a 9=2a6=60,故选C.3.(2024·台州第一次质量评估)已知数列{a n }满足对于∀m ,n ∈N *,a m+n =a m +a n .若a 2023=2023,则a 1=( )A.1B.2C.3D.2023A A 令m =1,则a n +1=a 1+a n ,故a n +1-a n =a 1,∵a 1为常数,故数列{a n }是等差数列,公差为a 1,∴a 2023=a 1+(2023-1)a 1=2023a 1=2023,则a 1=1,故选A.4.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革A命”.1949年新中国成立,请推算新中国成立的年份为( )A.己丑年B.己酉年C.丙寅年D.甲寅年A 根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.5.(2024·济南莱芜一中阶段考)设等差数列{a n}的前n项和为S n,若S3=D16,S6=8,则S12=( )A.-50B.-60C.-70D.-80D 由等差数列的性质可知,S3,S6-S3,S9-S6,S12-S9成等差数列,且该数列的公差为(S6-S3)-S3=-8-16=-24,则S9-S6=(S6-S3)-24=-32,所以S12-S9=(S9-S6)-24=-56,因此S12=S3+(S6-S3)+(S9-S6)+(S12-S9)=-80.6.(2023·合肥期末)等差数列{a n }的前n 项和为S n ,公差不为0,若S 5=S 10,则( )A.S 5=0B.S 8=0C.S 15=0D.S 17=0C C 设等差数列{a n }的首项为a 1,公差为d ,d ≠0,由已知S 5=S 10得a 6+a 7+a 8+a 9+a 10=0,即5a 8=0,所以a 8=0,。
第二讲:等差数列及其前n 项和知识体系:一、等差数列1、等差数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
定义的表达式为1,n n a a d d +-=为常数。
2、等差中项:若a 、A 、b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
3、等差数列的通项公式及其变形: 通项公式:,其中1a 是首项,d 是公差。
通项公式的变形:(),n m a a n m d n m =+-≠注意:等差数列通项公式的应用:(1)由等差数列的通项公式1(1)n a a n d =+-,可知: ① 已知等差数列的首项和公差,可以求得这个数列的任何一项; ② 已知1,,,n a d n a ,这四个量中的任意三个,可以求得另一个量;(2)由等差数列通项公式变形可知,已知等差数列中的任意两项就可以确定等差数列中的任何一项。
4、等差数列和一次函数的关系由等差数列的通项公式1(1)n a a n d =+-可得1()n a dn a d =+-,如果设1,p d q a d ==-那么n a pn q =+,其中p ,q 是常数。
当p ≠0时,(n ,a )在一次函数y=px+q 的图像上,即公差不为零的等差数列的图像是直线y=px+q 上的均匀排开的一群孤立的点。
当p=0时,n a q =,等差数列为常数列,此时数列的图像是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点。
等差数列的单调性:当d >0时,数列{}n a 为递增数列;当d <0时,数列{}n a 为递减数列;当d =0时,数列{}n a 为常数列; 二、等差数列的前n 和:1、等差数列的前n 项和:等差数列的前n 项和公式11()(1)22n n n a a n n S na d +-==+; 等差数列前n 项和公式与函数的关系:由1(1)2n n n S na d -=+可得21()22n d dS n a n =+-,设1,22d da b a ==-,则有2n S an bn =+。
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.3.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.4.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 60解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49.(2)设等差数列{a n }的公差为d ,由题意可得 ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑nk =1(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727 B.3828 C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱 C.32钱 D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6, 得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1 DD .b n =2n +1答案 B解析 设等差数列{b n }的公差为d (d ≠0),S n S 2n=k ,因为b 1=1, 则n +12n (n -1)d =k [2n +12×2n (2n -1)d ], 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,又公差d ≠0,解得d =2,k =14. 所以数列{b n }的通项公式为b n =2n -1.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 10.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212, 解得k =13.11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.12.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, 解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3. 所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3. 记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10. 当n =2时,满足此式,当n =1时,不满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2. *13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.。
知识归纳一、等差数列的概念1.定义:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这样的数列叫做等差数列.2.等差中项:如果三数a 、A 、b 成等差数列,则A 叫做a 和b 的等差中项,即A =a +b2.二、等差数列的通项公式等差数列{a n }的通项a n =a 1+(n -1) d =a m +(n -m )d.推导方法:累加法a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1. 三、等差数列的前n 项和公式 等差数列{a n }的前n 项和S n =n a 1+a n 2=na 1+n n -12d. 推导方法:倒序相加法. 四、用函数观点认识等差数列 1.a n =nd +(a 1-d)(一次函数).2.S n =d 2n 2+(a 1-d2)n(常数项为零的二次函数).五、等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列,证明一个数列为等差数列,一般用定义法;(2)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列; (3)通项公式法:a n =kn +b(k ,b 是常数)(n ∈N *)⇔{a n }是等差数列; (4)前n 项和公式法:S n =An 2+Bn(A 、B 是常数)(n ∈N *)⇔{a n }是等差数列. (5){a n }是等差数列⇔{S nn }是等差数列.六、等差数列的性质 1.下标和与项的和的关系在等差数列中,若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有 a p +a q =2a m ,(p ,q ,m ,n ∈N *). 2.任意两项的关系在等差数列{a n }中,m 、n ∈N *,则a m -a n =(m -n)d 或a m =a n +(m -n)d 或a m -a nm -n=d. 3.在等差数列中,等距离取出若干项也构成一个等差列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md.等差数列的依次n 项和也构成一个等差数列,即S n ,S 2n -S n ,S 3n -S 2n ,……第2讲 等差数列为等差数列,公差为n2d.即下标成等差的项成等差数列,下标和成等差的具有相同构成规律的项的和成等差数列.4.设等差数列{a n}的公差为d,那么(1)d>0⇔{a n}是递增数列,S n有最小值;d<0⇔{a n}是递减数列,S n有最大值;d=0⇔{a n}是常数数列.(2)数列{λa n+b}仍为等差数列,公差为λd.(3)若{b n},{a n}都是等差数列,则{a n±b n}仍为等差数列.(4)项数为n的等差数列中,n为奇数时,S奇-S偶=a n+12,S奇S偶=n+1n-1.S n=na中=na n+12.n为偶数时,S偶-S奇=n2d.(5)若{a n}与{b n}为等差数列,且前n项和分别为S n与S′n,则a mb m=S2m-1S′2m-1.误区警示1.用a n=S n-S n-1求a n得到a n=pn+q时,只有检验了a1是否满足a n,才能确定其是否为等差数列,前n项和是不含常数项.....的n的二次函数时,{a n}才是等差数列.2.在讨论等差数列{a n}的前n项和S n的最值时,不要忽视n是整数的条件及含0项的情形.3.如果p+q=2r(p、q、r∈N*),则a p+a q=2a r,而不是a p+a q=a2r.方法技巧一、函数思想等差数列的通项是n的一次函数,前n项和是n的二次函数,故有关等差数列的前n项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.[例1]已知数列{a n}为等差数列,且a3=5,a5=11,则a n=__________.二、等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x-d,x,x+d,…,此时公差为d;(2)对于连续偶数项的等差数列,通常可设为…,a-3d,a-d,a+d,a+3d,…,此时公差为2d.[例2]有四个数,其中前三个成等差数列,后三个成等比数列,并且第一个与第四个数的和为16,第二个与第三个数的和为12,求这四个数.典例讲练等差数列的通项已知等差数列{a n }、{b n }的公差分别为2和3,且b n ∈N *,则数列{ab n }是( ) A .等差数列且公差为5 B .等差数列且公差为6 C .等差数列且公差为8 D .等差数列且公差为9①在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .18②已知数列{a n }中,a 3=2,a 5=1,若{11+a n }是等差数列,则a 11等于( )A.0B.16C.13D.12等差数列的前n 项和①等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66②设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{S nn }的前n项和,求T n .①已知等差数列{a n }的前n 项和S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A. 12B .1C .2D .3②已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0D .S 5=S 6等差数列性质的应用已知等差数列{a n }的前n 项和为S n ,若m>1,且a m -1+a m +1-a 2m -1=0,S 2m -1=39,则m 为( ) A .10 B .19 C .20D .39①等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( ) A .130 B .65 C .70D .75②在等差数列{a n }中,若a 1+a 5+a 9=π4,则tan(a 4+a 6)等于( )A. 3 B .-1 C .1D.33有关等差数列的最值问题等差数列{a n }中,a 1<0,S 9=S 12,该数列前多少项的和最小?①若数列{a n }(n ∈N *)的首项为14,前n 项的和为S n ,点(a n ,a n +1)在直线x -y -2=0上,那么下列说法正确的是( )A .当且仅当n =1时,S n 最小B .当且仅当n =8时,S n 最大C .当且仅当n =7或8时,S n 最大D .S n 有最小值,无最大值②已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21综合应用设{a n }是一个公差为d(d ≠0)的等差数列,它的前10项和S 10=110,且a 1、a 2、a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.①数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11②设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n = k =1nb k ,证明:S n <1.课堂巩固1.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43 D .452.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6D .53.设S n 是等差数列{a n }的前n 项和,若a 4=9,S 3=15,则数列{a n }的通项a n =( ) A .2n -3 B .2n -1 C .2n +1 D .2n +34.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时n 的值是( )A .5B .6C .7D .8 5.设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S 20等于( )A.19B.310C.18D.136.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .187.已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( ) A .10 B .16 C .20D .248.已知等差数列{a n }的公差为d(d≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6D .49.设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( ) A .22 B .21 C .20D .1910.已知方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为14的等差数列,则|m -n|=A.1B.34C.12D.3811.已知直线(3m +1)x +(1-m)y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10=( ) A.921 B.1021 C.1121D.202112.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.13.已知a n =n 的各项排列成如图的三角形状:记A(m ,n)表示第m 行的第n 个数,则A(21,12)=________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 … … … … … … … … … …14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( ) A .-2或-3 B .2或3 C .-2 D .316.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .117.数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.18.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且 b n -1+b n +1=2b n (n≥2). (1)求数列{a n }和{b n }的通项公式; (2)若c n =b na n ,求数列{c n }的前n 项和T n .19.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.18B.13C.19D.31020.将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组. A .30 B .31 C .32D .3321.设数列{a n }是以2为首项,1为公差的等差数列,b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1033B .2057C .1034D .205822.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i<4?B .i<5?C .i≥5?D .i<6?23.已知函数f(x)=sinx +tanx.项数为27的等差数列{a n }满足a n ∈⎝⎛⎭⎫-π2,π2,且公差d≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k =______时,f(a k )=0.24.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.25.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)设T n 为数列{1a n a n +1}的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22D .442.等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对 3.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .94.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为 A .3 B .-1 C .2 D .3或-15.已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( ) A .16 B .11 C .-11 D .±116.在函数y =f(x)的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f(x)的解析式可能为( )A .f(x)=2x +1B .f(x)=4x 2C .f(x)=log 3xD .f(x)=⎝⎛⎭⎫34x7.已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b 2的值为________.8.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________. 9.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …………2826那么10.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上. (1)求数列{a n }的通项公式; (2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .11.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 212.设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 15a 15B.S 9a 9C.S 8a 8D.S 1a 113.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A.1升 B.6766升 C.4744升 D.3733升14.若数列{x n }满足x n -x n -1=d ,(n ∈N *,n≥2),其中d 为常数,x 1+x 2+…+x 20=80,则x 5+x 16=________.15.已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .。
第一讲:巧算之一—多位数乘法的珠心算【例题讲解】例1: 76×74 31×39例2:78×38 43×63例3:702×708 1708×1792【课堂练习】1. 68×622. 93×973. 27×874. 79×397.8.3+10+17+24+…+1019. 2+6+10+14+18+22【课后思考】(2+4+6+......+100)—(1+3+5+ (99)第三讲:平均数问题【例题讲解】例1: 贝贝前两次测验的数学平均成绩是6分,第三次测验后,三次的平均成绩是70分。
第三次得了多少分?例2: 五个数的平均数是139,把这些数排成一排,左边三个数的平均数是127,右边三个数的平均数是148,那么,排在中间的这个数是多少?例3:甲乙丙三个数,甲数和乙数的平均数是93,甲数和丙数的平均数是87,乙数和丙数的平均数是80。
甲乙丙三个数各是多少?例4: 小强从甲地到乙地,先骑自行车行完全程的一半,每小时行12千米。
剩下的步行,每小时行4千米。
小强行完全程的平均速度是多少?【课堂练习】1.小华参加了四次语文测验,平均成绩是68分,他想在下一次语文测验后,将五次的平均成绩提高到70分以上。
那么,在下次的测验中,他至少要得多少分以上?2. 某五个数的平均数是70,若把其中一个数改为90,则这五个数的平均数变为80.改动的这个数原来是多少?3.4.有38例例1.2.3. A※B=A×B-A+B,求:(1)、1※3(2)、3※(3※3)4. P、Q表示两个数,P※Q=(P+Q)÷2(1)、求20※30。
(2)、求3※(6※8)。
(3)、知道8※B=7,求B。
5. 如果:3⊗2=3×3,4⊗3=4×4×4求:(1)、2⊗5(2)、(9⊗3)÷(3⊗4)6. 如果2◆3=2+3+4, 5◆4=5+6+7+87◆6=7+8+9+10+11+12求:(1)、8◆3 (2)、1◆107. 设,x y 为两个不同的数,规定x □y ()4x y =+÷,求a □16=10中a 的值。
第2讲 等差数列及其前n 项和一、选择题1.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9等于( ).A .66B .99C .144D .297解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9a 1+a 92=9a 5=99.答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ). A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C.答案 C5.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为( ). A .12 3B .15 3C .12D .15解析 不妨设角A =120°,c <b ,则a =b +4,c =b -4,于是cos 120°=b 2+b -42-b +422b b -4=-12,解得b =10,所以S =12bc sin 120°=15 3.答案 B6.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( )A.7B.15C.20D.25 解析15242451,5551522a a a aa a S ++==⇒=⨯=⨯=.答案 B 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.两个等差数列的前n 项和之比为5n +102n -1,则它们的第7项之比为________.解析 设两个数列{a n },{b n }的前n 项和为S n ,T n ,则S n T n =5n +102n -1,而a 7b 7=a 1+a 13b 1+b 13=S 13T 13=5×13+102×13-1=31.答案 3∶110.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.已知数列{a n }的前n 项和S n =10n -n 2,(n ∈N *).(1)求a 1和a n ;(2)记b n =|a n |,求数列{b n }的前n 项和. 解 (1)∵S n =10n -n 2,∴a 1=S 1=10-1=9. ∵S n =10n -n 2,当n ≥2,n ∈N *时,S n -1=10(n -1)-(n -1)2=10n -n 2+2n -11, ∴a n =S n -S n -1=(10n -n 2)-(10n -n 2+2n -11) =-2n +11.又n =1时,a 1=9=-2×1+11,符合上式. 则数列{a n }的通项公式为a n =-2n +11(n ∈N *). (2)∵a n =-2n +11,∴b n =|a n |=⎩⎨⎧-2n +11n ≤5,2n -11n >5,设数列{b n }的前n 项和为T n ,n ≤5时,T n =n 9-2n +112=10n -n 2;n >5时T n =T 5+n -5b 6+b n2=25+n -51+2n -112=25+(n -5)2=n 2-10n +50,∴数列{b n }的前n 项和T n =⎩⎨⎧10n -n 2n ≤5,n ∈N *,n 2-10n +50n >5,n ∈N *.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2. ∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45)=n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。
等差数列及其应用大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和。
大家在惊叹佩服之余,仔细想一想,小高斯的聪明和善于观察是不心说,最基本的左面原因却是这100个数所排列的这一组数列,具有极强的规律性。
这种数列的求和有极简便的求和方法。
通过这一讲的学习,你们也不逊色于大数学家“高斯”。
一、什么叫等差数列1)1,2,3,4,5,6,7,8,9,……2)1,3,5,7,9,11,13。
3)3,6,9,12,15,18,21,24,27,……4)100,95,90,85,80,75,70,65,60……5,0。
这六个数列有一个共同的特点,即相邻两项的差是一个固定的数,像这样的数列就称为等差数列。
其中这个固定的数就称为公差,一般用字母d表示,如:数列1)中,d=2-1=3-2=4-3=5-4=6-5= (1)数列2)中,d=3-1=5-3=7-5=9-7=11-9=13-11=2;数列3)中,d=6-3=9-6=12-9=15-12= (3)数列4)中,d=100-95=95-90=90-85=85-80= (5)二、等差数列的几个常用公式一个数列a1,a2,a3,a4,a5,a6,a7,…a n-1,a n,我们一般地,我们把“n”叫这个数列的项数;a4,a5,a6,a7,…叫这个数列的项,例:“a4”表示这个数列的第4项;等差数列中的公差,我们一般用d来表示; s n表示等差数列的前n项的和……根据等差数列的特点,我们得到以下几个等差数列常用公式:等差数列通项公式:a n= a1+(n-1)d;等差数列首项公式:a1= a n-(n-1)d;等差数列项数公式:n=( a n-a1)÷d+1;等差数列求和公式:s n=(a1+a n)×n÷2[例1] 判断下列数列中哪些是等差数列,并说明理由。
1)6,10,14,18,22, (98)2)1,2,1,2,1,2,1,2,1,2, (2)3)19,18,17,16,15,14,13,12,11,10;4)11,11,11,11,11,11,11,11,11,11,11,11;5)1,4,7,10,13,16,19,22,25,28, (3001)通过等差数列的定义进行判断,可知:1)、3)、4)、5)都是等差数列。
第二讲《等差数列及其前n项和》1.等差数列的定义:一般地,如果一个数列从第______项起,每一项与它的前一项的差等于______________,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为____________(常数)(n∈N*,n≥2)或____________(常数)(n∈N*).2.等差数列的通项公式:若等差数列{a n}的首项为a1,公差为d,则其通项公式为______________.亦可以用数列中的第m项a m与公差d表示为a n=______________. 3.等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=__________. 4.等差数列的前n项和公式:S n=________________________.5.等差数列的性质已知数列{an}是等差数列,Sn是其前n项和.(1)若m+n=p+q,则_______________特别:若m+n=2p,则am+an=2ap.(2)am,am+k,am+2k,am+3k,…仍是等差数列,公差为_______.(3)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.1.已知在等差数列{an}中,a1+a2=6,a7+a8=30,则数列{an}的通项公式为() A.2n B.2n+1C.2n-1 D.2n-22.若等差数列{a n}的前5项和S5=25,且a2=3,则a2 011=()A.2 011 B.4 021C.4 022 D.2 0123.已知等差数列{an}中,a3+a6+a9=15,则a5+a7=__________________________________.4.已知等差数列{an},其前n项和为Sn,且S10=10,S20=30,则S30=________. 5.(2011·天津,4)已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn 为{an}的前n项和,n∈N*,则S10的值为()A.-110 B.-90C.90 D.110等差数列的基本运算例1.已知等差数列{a n}的前n项和为S n,且a3=5,S15=225.(1)求数列{a n}的通项a n;(2)设b n=2a n+2n,求数列{b n}的前n项和T n.1.已知数列{a n}、{b n}满足:a1=14,a n+b n=1,b n+1=b n1-a n 1+a n ,(1)求b1,b2,b3,b4;(2)求证数列{1b n-1}是等差数列,并求b n;(3)设S n=a1a2+a2a3+a3a4+…+a n a n+1,求实数a为何值时4aS n<b n恒成立.等差数列的判定例2.已知数列{a n }的前n 项和为S n ,且满足S n =S n -12S n -1+1(n ≥2),a 1=2. (1)求证:{1S n}是等差数列; (2)求a n 的表达式.(1)等差数列的判定通常有两种方法:第一种是利用定义,an -an -1=d (常数)(n ≥2),第二种是利用等差中项,即2an =an +1+an -1(n ≥2).(2)解选择、填空题时,亦可用通项或前n 项和直接判断.①通项法:若数列{an } 的通项公式为n 的一次函数,即an =An +B ,则{an }是等差数列.②前n 项和法:若数列{an }的前n 项和Sn 是Sn =An 2+Bn 的形式(A ,B 是常数),则{an }为等差数列.提醒:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可.2.在数列{a n }中,a 1=1,a n +1=2a n +2n .设b n =a n 2n -1.证明:数列{b n }是等差数列.在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n .(1)求S n 的最小值,并求出S n 取最小值时n 的值.(2)求T n =|a 1|+|a 2|+…+|a n |.3.已知等差数列{an }中,|a 3|=|a 9|,公差d <0,则使前n项和Sn 取得最大值的正整数n 的值是多少?一、选择题1.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a n 等于( )A .3n -2B .3n -3C .3n -4D .3n -52.若{a n }是等差数列,首项a 1>0,a 2 011+a 2 012>0,a 2 011·a 2 012<0,则使数列{a n }的前n 项和S n >0成立的最大自然数n 是( )A .4 021B .4 022C .4 023D .4 0243.已知等差数列{a n }的前13项之和为39,则a 6+a 7+a 8等于( )A .6B .9C .12D .184.已知等差数列{a n }与{b n }的前n 项和分别为S n 与T n ,且S n T n =2n +13n +2,则a 9b 9等于( ) A.5335 B.3553C.3552D.3551(理)设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1 B .-1C .2 D.125.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14 B.12C.13D.236.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A .11B .20C .19D .21二、填空题7.已知{a n }为等差数列,若a 1-a 8+a 15=20,则a 3+a 13的值为________.8.已知a 、b 、c 成等差数列,那么二次函数y =ax 2+2bx +c 的图像与x 轴有________个交点.9.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1·OA →+a 200·OC →,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=________.三、解答题10.等差数列{a n }的前n 项和为S n ,且S 5=45,S 6=60.(1)求{a n }的通项公式a n ;(2)若数列{a n }满足b n +1-b n =a n (n ∈N *)且b 1=3,求{1b n}的前n 项和T n . 11.设不等式组⎩⎪⎨⎪⎧ x >0y >0y ≤-nx +3n所表示平面区域为D n ,记D n 内的整点个数为a n (n ∈N *)(整点即横坐标和纵坐标均为整数的点).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1.若对于一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.。
目录第二讲等差数列初步 (2)考点1:等差数列的概念 (2)题型一:等差数列判别 (2)考点2:等差数列的通项公式 (2)题型二:等差数列通项公式 (3)考点3:等差数列的求和公式 (5)题型三:等差数列求、 (5)考点4:等差数列的性质 (7)题型四:等差数列性质 (7)课后综合巩固练习 (10)第二讲 等差数列初步考点1:等差数列的概念定义:一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫等差数列.这个常数叫做等差数列的公差,常用字母d 表示.题型一:等差数列判别例1.列数列是等差数列吗?如果是求出公差,如果不是请说明理由. ①13579,,,,,;②5137--,,,,;③5555,,,,; ④222222---,,,,,,;⑤531123---,,,,,,;考点2:等差数列的通项公式已知等差数列{}n a ,首项为1a ,公差为d ,第n 项(通项)为n a ,通项公式:()11n a a n d =+-. 叠加法求其通项公式. 叠加法: 1n n a a d --= 12n n a a d ---= 23n n a a d ---=21a a d -=将这1n -个式子左右分别相加可得1n a a -=()1n d -,故()11n a a n d =+-. 知道数列的首项与末项,可以求项数,公式为11n a a n d-=+.题型二:等差数列通项公式例2.(1)已知等差数列{}n a 的通项公式为73n a n =-,则公差为_______,首项为_____.(2)等差数列951,,,的第4项4a =_______,第20项20a =_______.(3)等差数列3711103,,,,的项数n =______,第5项为_______.(4)(2018秋•珠海期末)已知数列{}n a 是等差数列,且22a =-,510a =,则数列{}n a 的通项n a =_______.(5)(2018春•杭州期中)等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .(0,)+∞B .8(,)75+∞ C .83(,)7525D .83(,]7525(6)(2019•柳州一模)等差数列{}n a 中,若46131520a a a a +++=,则101215a a -的值是() A .4 B .5 C .6 D .8(7)(2018秋•思明区校级期中)已知数列{}n a 中,12a =,532a =,且数列1{}1na -是等差数列,则13(a = ) A .54B .2117C .12D .2-(8)(2019•赤峰模拟)已知1{}1n a +是等差数列,且114a =,41a =,则10(a = ) A .5- B .11- C .12- D .3(9)(2019•莆田二模)《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题” ),后来我国南宋数学家秦九韶在《数书九章大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为( ) A .116 B .131C .146D .161例3.(1)已知43n a n =-,则d =______. (2)已知1001n a n =-,则d =______. (3)已知123a d ==,,则n a =______. (4)已知512a d ==-,,则n a =______. (5)已知4132a d ==,,则n a =______. (6)已知315122a d ==-,,则n a =_____. (7)等差数列34575,,,,的项数为______.(8)等差数列42026-,,,,的项数为_______. (9)等差数列3032013-,,,,的项数为______.(10)等差数列110824--,,,,的项数为______.考点3:等差数列的求和公式已知等差数列{}n a ,首项为1a ,公差为d ,通项为n a ,前n 项和为n S . ()12n n n a a S +=;⑵()112n n n S na d -=+.题型三:等差数列求 、例4.(1)等差数列371179,,,,的各项的和为_______.(2)已知数列{}n a 是等差数列,13a =,2d =,则20S =________.(3)(2019•新课标Ⅰ)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A .25n a n =- B .310n a n =-C .228n S n n =-D .2122n S n n =-(4)(2018•曲靖二模)在我国古代的数学专著《九章算术》里有一段叙述:“今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:良马与驽马几日相逢?( ) A .8日 B .9日C .12日D .16日(5)(2018春•梅州期末)等差数列{}n a 中,若4a ,6a 是方程2221170x x -+=的两根,则数列{}n a 的前9项和等于( ) A .66 B .99C .144D .297(6)(2019•荆州三模)已知在数列{}n a 中,11(*n n a a n N -=+∈且2)n …,设n S 为{}n a 的前n 项和,若972S =,则9(a = ) A .8 B .12 C .16 D .36(7)(2019•临渭区模拟)已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23 D .23-(8)(2019•黄山三模)平均数为1010的一组数构成等差数列,其末项为2019,则该数列的首项为例5.(1)(2018春•温州期末)已知等差数列{}n a 前n 项和为2n S an bn c =++,则下列一定成立的是( ) A .0a = B .0a ≠C .0c ≠D .0c =(2)(2018秋•湖北期末)已知数列{}n a 的通项215n a n =-+,则其前n 项和n S 取得最大值时的n 值为( ) A .1 B .7或8C .8D .7考点4:等差数列的性质1.等差中项:若x A y ,,成等差数列,则A 称为x y ,的等差中项,2x yA +=. 2.等差数列{}n a 的简单性质(其中公差为d ): (1)()n m a a n m d =+-(*m n ∈N ,);(2)若p q m n +=+,则有p q m n a a a a +=+;若2m p q =+,则有2m p q a a a =+(p ,q ,m ,n *∈N );若p q m n +=+,则p q m n a a a a +=+(3)在等差数列中,等距离取出若干项也构成一个等差数列,即n a ,n m a +,2n m a +,,为等差数列,公差为md ;(4){}n a 的前n 项和为n S ,则()2121n n S n a -=-.题型四:等差数列性质例6.(1)(2019春•沙坪坝区校级期中)等差数列{}n a 中,若23a =,47a =,则6(a =) A .11 B .7C .3D .2(2)(2019春•宿州期中)在等差数列{}n a 中,1815360a a a ++=,则2814a a a -+等于() A .10B .12C .11D .4-(3)(2018春•朔州期末)在等差数列{}n a 中,若14739a a a ++=,25833a a a ++=,则369a a a ++的值为( )A .30B .27C .24D .21(4)(2018秋•长汀县校级月考)若等差数列{}n a 中,2589a a a ++=,则关于x 的方程219()100x a a x +++=的根的情况为( )A .无实根B .有两个相等的实根C .有两个不等的实根D .不能确定有无实根(5)(2018春•南关区校级期末)在等差数列{}n a 中,2a ,10a 是方程2270x x --=的两根,则6a 等于( ) A .12B .14 C .72-D .74-例6.(1)(2018春•顺庆区校级期中)等差数列{}n a 中,若2491132a a a a +++=,则67(a a +=) A .9 B .12C .15D .16(2)(2017秋•商丘期末)已知{}n a 是等差数列,且1231030a a a a +++⋯+=,则56(a a +=)。
等差数列ppt标题:等差数列一、引言数列是数学中的一个概念,是由一组按一定顺序排列的数依次组成的序列。
而等差数列是其中一种常见的数列。
本次演讲主题为等差数列,将主要介绍等差数列的定义、性质以及实际应用。
二、等差数列的定义等差数列是指数列中的相邻两项之差是一个常数。
首先,我们来看等差数列的一般形式:an = a1 + (n-1)d。
其中,an 表示第n个数,a1表示首项,d表示公差,n表示项数。
等差数列的公差是数列中相邻两项之间的差别。
三、等差数列的性质1. 公差的性质:等差数列中,所有相邻两项之差都相等。
2. 总和的公式:等差数列的前n项和Sn可以通过公式Sn = (n/2)(a1+an)进行计算。
即,前n项和等于项数n与首项和末项之和的乘积的一半。
3. 通项公式:等差数列的第n个数(通项)可以通过公式an = a1 + (n-1)d得到。
4. 等差中项:若等差数列的项数n是奇数,则中间项是n/2+1;若n是偶数,则中间两项分别是n/2和n/2+1。
四、等差数列的应用1. 排列组合:等差数列的应用在排列组合中是很常见的。
通过等差数列的性质,可以轻松解题。
2. 数学建模:等差数列在数学建模中有广泛应用。
例如,用等差数列可以描述连续变化的数据,从而进行预测和分析。
3. 经济学:等差数列的应用在经济学中也很重要。
例如,用等差数列可以对某一指标的连续变化进行分析和预测,从而为经济决策提供参考。
五、总结通过本次演讲,我们简要介绍了等差数列的定义、性质以及应用。
等差数列在数学中起到了很重要的作用,通过掌握等差数列的性质和应用,可以更好地理解和应用数学知识。
让我们一起探索更多有趣的数学概念吧!。
第二讲等差数列教学课题:等差数列教学课时:两课时教学目标:1、掌握等差数列的前n项和公式,以及求项数和求末项的公式2、进一步熟练掌握等差数列的通项公式和前n项和公式。
3、了解等差数列的一些性质,并会用它们解决一些相关的问题教学重点:熟练掌握等差数列的求和公式。
教学难点:引导学生推导等差数列的三个公式教学过程:一、故事导入高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050今天我们也要学习关于等差数列的知识。
二、新课例1、找规律填空。
1)2,9,16,23,_30_ ,__37__;2)4,9,14,19,24,__29__ ,__34_;3)1,2,4,7,11,__16__ ,__22__;4) 32,16,8,4,__2__ ,___1_;5分析:填完了以后说一说这几组等差数列各部分的名称(1)首项:2 末项:37 公差:7 项数:6(2)首项:4 末项:34 公差:5 项数:7(5)首项:3 末项:15 公差:2 项数:7例4、等差数列2,7,12,17,22……的第150项是多少?分析:首项是2,公差是5,项数是150,求第150项首项2加上1个公差从2开始加上1个公差就得到第二个数,加上2个公差就得到第三个数,加上3个公差就得到第四个数……那加上多少个公差就等于第150个项?2+5×(150-1)=747公式:首项+公差×(项数-1)=第几项例2、在等差数列:3、7、11、15……中,399是其中的第几项?分析:首项是2,末项是399,公差是4,求399是其中的第几项就是求这一数列一共游多少个,也就是求项数。
第2讲-等差数列学习提纲与学习目标1、掌握等差数列的定义、通项公式和前n项和公式的求法2、熟练掌握等差数列的性质,并能利用这些性质解决相应问题1.等差数列的定义对于数列{}n a ,如果对任意的*1()n n N ≥∈,都有1n n a a d +-=(常数),则称{}n a 为等差数列,常数d 叫这个等差数列的公差。
如,,a b c 三个数成等差数列,则称b 为,a c 的等差中项。
2.等差数列的通项公式若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为1(1)n a a n d =+-。
3.等差数列的前n 项和公式2111()(1)()2222n n n a a n n d d d S na n a n +-==+=+-;4. 数列{}n a 是等差数列2n S An Bn ⇔=+(,A B 为常数)nS n⇔为等差数列。
5.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(3)a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.例1(1)(2018全国I )设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【解析】(1)32433343332133233()S S S S S a a S S d S d a d a d d =+⇒=-++=+⇒=⇒=⇒+=, 因12a =,故3d =-,故51410a a d =+=-,选C 。
第二讲 等差数列知识要点1.若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为未项,数列中的个数称为项数,从第二项开始,后项与前项之,后项与前项的差称为公差。
例如: 、3、5、7、9、…97、99、 首项末项 每两个数之间相差为2,即公差为2。
共有51个数,即项数为51。
2.需要牢记的公式(1)未项=首项+(项数-1)×公差,根据此公式,又可推出: 首项=末项-(项数-1)×公差项数=(末项-首项)÷公差+1(2)数列和=(首项+末项)×项数÷2典型例题例1 已知等差数列7,20,23,26,29,32,…,它的第25项是什么?107是它的第几项?例2 已知等差数列7,12,17,…,127,132,问这个等差数列共有多少项?1011例3 某剧院里共有25排座位,从第一排座位开始,以后每一排比前一排多2个座位,最后一排有70个座位,问这个剧院一共有多少个座位?例4 (2+4+6+...+100)-(1+3+5+ (99)例5 (1)11+13+15+17+…+2007(2)计算1000+999-998-997+996+995-994-993+…+108+107-106-105+104+103-102-101例6 下面方阵中所有数的和是1900 1901 1902 1903 (1949)1901 1902 1903 1904 (1950)1902 1903 1904 1905 (1951)1948 1949 1950 1951 (1997)1949 1950 1951 1952 (1998)随堂小测1.已知等差数列2,7,12,17,22,……,求这个数列的第25项是什么?57项呢?2.求等差数列9,15,21,27,…,303中一共有多少项?3.有一堆粗细均匀的圆木,堆成下图的形状,最上面一层有6根,每向下一层增加一根,共堆了25层,这堆圆木共有多少根?…… …… …… …… ……4.101+104+107+110+…+896+8995.200-198+188-186+…+8-66.999个队员参加交际舞会,每两个人握一次手,他们握了多少次手?7.下面的数的总和是2000 2001 2002 (2049)2001 2002 2003 (2050)2048 2049 2050 (2097)2049 2050 2051 (2098)…… …… …… ……8.从401到1000的整数中,被8除余数为1的数有多少个?课后作业1.求等差数列10,18,26,…的第50项是多少?2.6,12,18,……186中一共有多少项?3.某剧院有50排座位,后一排比前一排多3个座位,最后一排有180个座位,这个剧院一共有多少个座位?4.4+8+10+14+16+……+94+98+1005.1+2-3+4+5-6+7+8-9+…+88+89-906.求1至100以内所有不能被5或7整除的数的和。
1.★数列2,4,6,8,10,…中,50是第⼏几个数?
2.★数列1,3,5,7,9,11,…中,第20项是多少?
3.★★1+3+5+….+99=______
4.★★⼩小明先在⿊黑板上写了⼀一个等差数列,刚写完⼩小⾼高就冲上讲台,擦去了其中⼤大部分的数,只留下了第四个数31和第⼗十个数73。
你能算出这个等差数列的公差和⾸首项吗?
5.★★⼀一个等差数列的⾸首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?
6.★★★已知⼀一个等差数列第8项等于50,第15项等于71.请问:
(1)这个等差数列的第1项是多少?
(2)这个等差数列前10项的和是多少?
7.★★★已知⼀一个等差数列的前5项的和为500,前10项之和为1500。
请问:这个等差数列的公差是多少?
8.★★★⼀一个等差数列的前11项的和是231,前33项的和为1782,这个等差数列的前55项的和是多少?
9.★★★★⼩小明将连续⾃自然数1、2、3、4、5......逐个相加,得到结果2014。
验算时发现漏加了⼀一个数,那么这个漏加的的数是______。
10.★★★★在⼀一次考试中,第⼀一组同学的分数恰好构成了公差为3的等差数列,总分为609。
卡莉娅发现⾃自⼰己的分数算少了,找⽼老师更正后,加了21分,这时他们的成绩还是⼀一个等差数列。
请问:卡莉娅正确的分数是多少?。