[例10-7]:偏心拉伸杆,弹 性模量为E,尺寸、受力如图 所示。求: (1)最大拉应力和最大压 应力的位置和数值; (2)AB长度的改变量。 分析:这是偏心拉伸问题
最大拉应力发生在AB线 上各点,最大压应力发 生在CD线上各点。
CL11TU24
解:(1)应力分析
Ph Pb N P, M y , M z 2 2 t N M y Mz c A Wy Wz
3.算例 [例10-4]求高h,宽b的矩形截面的截面核。 b (1)作中性轴Ⅰ,z , a y a 解:
(2)求载荷点① , 2 iy b2 2 b zF ② az 2 6 b 3 z iz ③ yF 0 ① ay ④ (3)作中性轴Ⅱ , h a z , a y 2 b y b (4)求载荷点② , 2 2 2 Ⅰ 2 2 iy iz h h h z F 0, yF ay 6 2 3 az
(1)过截面周边上的一点作切线,以此作为第一 根中性轴; (2)据第一根中性轴的截距求第一个载荷点坐标; (3)过截面周边上相邻的另一点作切线,以此作 为第二根中性轴; (4)按(2)求于第二个中性轴对应的第二个载荷 点坐标; (5)按以上步骤求于切于周边的各特征中性轴对应 的若干个载荷点,依次连接成封闭曲线即截面核心。
中性轴把横截面分为受拉区和受压区,两个 区范围的大小受载荷作用点坐标的控制。 定义:使横截面仅受一种性质的力时载荷作用 的最大范围成为截面核心。
二.截面核心的求法 1.截距与载荷坐标的关系
z F , az ; zF , az
2.作截面核心的方法
zF 0, az ; zF , az 0
解:(1)简化外力: