浙江省高考数学二轮复习专题10:解析几何
- 格式:doc
- 大小:1.95 MB
- 文档页数:24
《高考解析几何二轮复习资料》第一讲 《直线与圆篇》类型一 直线方程[例1](2012年高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件练习1.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.类型二 圆的方程[例2](2012年杭州五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A 、B ,则 △ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5练习2.(2012年长春高三摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.类型三 直线与圆的位置关系[例3](2012年高考天津卷)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)练习3.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( ) A .(-1,1) B .(0,2) C .(-2,0)D .(1,3)练习4.(2012·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.练习5.直线y =kx +3与圆(x -1)2+(y +2)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是( )A.⎝⎛⎭⎫-∞,-125B.⎝⎛⎦⎤-∞,-125C.⎝⎛⎭⎫-∞,125D.⎝⎛⎦⎤-∞,125 高考真题1.(2012年高考江苏卷)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.2.[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能3.[2012·重庆卷] 对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心第二讲 圆锥曲线篇 (一)基础知识部分1、圆锥曲线的定义:(1)8=表示的曲线是 。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
例谈解析几何中齐次化技巧一.基本原理在解析几何计算与二次曲线“半径”(曲线上一点到坐标原点的连线)斜率有关的问题时,我们可以进行“1”代换的齐次化计算,即一般计算步骤为:22222)(1b kx y ny mx ny mx b kx y -=+⇒⎩⎨⎧=++=,整理可得:0(2=+⋅+C xy B x y A 0(2=+⋅+C x y B x y A 中的几何意义为:直线与曲线的交点与原点的连线的斜率,即,OA OB 的斜率,设为12,k k ,由韦达定理知12B k k A +=-,12C k k A=,从而能通过最初的二次曲线和直线相交,得出,OA OB 的性质,倒过来,我们也可以通过,OA OB 的性质与二次曲线得出AB 的性质.下面通过例题予以分析.二.典例分析例1.已知双曲线22:154x y Γ-=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =-上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.解析:(1)由已知1(3,0)F -,2(3,0)F ,设(9,8)P λλ-,(0)λ≠,∴1839k λλ=--,2893k λλ-=-,121139939884k k λλλλ---+=+=--.(2)由题意知直线113k x k y AB =-:,与双曲线方程联立得2121229)(45k x k y y x -=-,同除以2x ,令x y k =得0454929141(1221=--+k k k k ,因此498914192211211+=+=+k k k k k k OB OA .同理将直线223:k x k y CD -=-与双曲线方程联立可得498222+=+k k k k OD OC ,所以0498498222211=+++=+++k k k k k k k k OD OC OB OA ,即0)49)((2121=++k k k k .由(1)知21k k -≠,令点)98,(00x x P -,所以94398398000021-=--⋅+-=x x x x k k ,所以解得590±=x ,∴存在98(,55P -或98(,)55P -满足题意.例2.如图,已知椭圆12222=+b y a x (a b 0)>>过点(1,22),离心率为22,左右焦点分别为12F F .点P 为直线l :2x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B 、和,C D O 、为坐标原点.(1)求椭圆的标准方程;(2)设直线1PF 、2PF 斜率分别为1k 2k 、.()i 证明:12132k k -=(ⅱ)问直线l 上是否存在一点P ,使直线OA OB OC OD 、、、的斜率OA OB OC OD k k k k 、、、满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.解析:(1)椭圆方程为2212x y +=.(2)设B A ,的坐标为),(),,(2211y x y x ,AB 方程为)1(1+=x k y ,022)11(12)1(21221221=-+-⇒⎪⎩⎪⎨⎧=++=x xy k y k y x x k y 即021(2)(11(1221=-+-x y k x y k 故12211--=+k k k k OB OA .同理,设D C ,坐标为),)(,(4433y x y x ,CD 方程:)1(2-=x k y ,则12222--=+k k k k OD OC ,故:0))(1(012122121222211=+-⇒=--+--k k k k k k k k .则⎪⎩⎪⎨⎧=-=23112121k k k k ,解得:P 的坐标为)43,45(或⎪⎩⎪⎨⎧=-=+23102121k k k k ,解得:P 的坐标为)2,0(三.习题演练已知椭圆C :()222210x y a b a b+=>>24y x =的焦点F .(1)求椭圆C 的标准方程;(2)O 为坐标原点,过O 作两条射线,分别交椭圆于M ,N 两点,若OM ,ON 斜率之积为45-,求证:MON △的面积为定值.答案:(1)椭圆方程为22154x y +=;(2)MON S =△为定值.。
第八章《解析几何》例1(1)、已知两点A(-3,3),B(3,-1),则直线AB 的倾斜角等于( )A. π3B. 2π3C. π6D. 56π (2)、如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A. k 1<k 2<k 3B. k 3<k 1<k 2C. k 3<k 2<k 1D. k 1<k 3<k 2(3)、已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A. 1B. -1C. -2或-1D. -2或1(4)、已知直线的倾斜角为120°,在y 轴上的截距为-2,则此直线的方程为( )A. y =3x +2B. y =-3x +2C. y =-3x -2D. y =3x -2(5)过点M(1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A. 2x +y =0B. 2x -y -4=0C. x +2y +3=0D. x -2y -5=0变式训练:1、直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A. 3x +2y -1=0B. 3x +2y +7=0C. 2x -3y +5=0D. 2x -3y +8=02、已知点A(1,-2),B(5,6),直线l 经过AB 的中点M ,且在两坐标轴上的截距相等,则直线l 的方程是________.3、过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( )A. 2x +y -12=0B. 2x +y -12=0或2x -5y =0C. x -2y -1=0D. x +2y -9=0或2x -5y =04、已知点A(-2,3),B(3,2),过点P(0,-2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是__.例2、(1)点(1,-1)到直线x -y +1=0的距离是( )A. 12 B. 32 C. 322 D. 22(2)若经过点(3,a)、(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为( )A. 52 B. 25C. 10D. -10 (3)已知过点A(-2,m)和B(m,4)的直线与直线2x +y -1=0平行,则m 的值为( )A. 0B. -8C. 2D. 10(4)直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________.(5)直线x -2y +1=0关于x =3对称的直线方程为________.变式训练:1、已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m 、n 的值,使(1)l 1与l 2相交于点P(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.2、P 点在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A. (1,2)B. (2,1)C. (1,2)或(2,-1)D. (2,1)或(-1,2)3、过点P(0,1),且与点A(3,3)和B(5,-1)的距离相等的直线方程是( )A. y =1B. 2x +y -1=0C. y =1或2x +y -1=0D. 2x +y -1=0或2x +y +1=0例3、(1)、已知圆的方程为x 2+y 2-2x =0,则圆心坐标为( )A. (0,1)B. (0,-1)C. (1,0)D. (-1,0)(2)已知方程x 2+y 2+2kx +4y +3k +8=0表示一个圆,则实数k 的取值范围是( )A. -1<k<4B. -4<k<1C. k<-4或k>1D. k<-1或k>4(3)圆心在曲线y =14x 2(x<0)上,并且与直线y =-1及y 轴都相切的圆的方程是( ) A. (x +2)2+(y -2)2=2 B. (x -1)2+(y -2)2=4 C. (x -2)2+(y -1)2=4 D. (x +2)2+(y -1)2=4(4)点P(4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A. (x -2)2+(y +1)2=1B. (x -2)2+(y +1)2=4C. (x +4)2+(y -2)2=4D. (x +2)2+(y -1)2=1(5)直线y =x -1上的点到圆x 2+y 2+4x -2y +4=0的最近距离为( )A. 2 2 B. 2-1 C. 22-1 D. 1 变式训练:1. 根据下列条件求圆的方程:(1)经过A(5,2),B(3,2),圆心在直线2x -y -3=0上;(2)半径为5且与x 轴交于A(2,0),B(10,0)两点;(3)圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分.2、已知点P(x ,y)是圆(x +2)2+y 2=1上任意一点.(1)求x -2y 的最大值和最小值;(2)求y -2x -1的最大值和最小值;(3)求(x -2)2+(y -3)2的最大值和最小值. 例4、(1)、圆x 2+y 2-4x =0在点P(1,3)处的切线方程为( )A. x +3y -2=0B. x +3y -4=0C. x -2y +4=0D. x -3y +2=0(2)、对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A. 相离B. 相切C. 相交但直线不过圆心D. 相交且直线过圆心(3)、圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有( )A. 1条B. 2条C. 3条D. 4条(4)、直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A. 2 5 B. 2 3 C. 3 D. 1(5)、圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.变式训练:1、直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( )A. 相离B. 相切C. 相交D. 不确定2、若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值范围是( )A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)3、求过点P(1,2),且与圆x 2+y 2=1相切的直线方程。
浙江省高考数学二轮复习专题 10:解析几何
姓名:________
班级:________
成绩:________
一、 单选题 (共 12 题;共 24 分)
1. (2 分) (2019 高二下·上海期末) 已知 F1 、 F2 为双曲线 C: ∠ F1 P F2 = 60° ,则 P 到 x 轴的距离为( )
的左、右焦点,点 P 在 C 上,
A.
B. C. D.
2. (2 分) (2017·山西模拟) 在双曲线 为直径的圆总过原点,则 C 的离心率为( )
A.3 B. C. D. 3. (2 分) (2018 高二上·长治月考) 已知圆 这两圆的位置关系是( ) A . 相交 B . 相离 C . 外切
第 1 页 共 24 页
的两条渐近线上各取一点 P,Q,若以 PQ
,圆
,则
D . 内含
4. (2 分) 方程 2x2+ky2=1 表示的是焦点在 y 轴上的椭圆,则实数 k 的取值范围是( )
A . (0,+∞)
B . (2,+∞)
C . (0,2)
D . (0,1)
5. (2 分) 已知 、 分别为椭圆 C 的两个焦点,点 B 为其短轴的一个端点,若 椭圆的离心率为( )
为等边三角形,则该
A. B. C.2
D.
6. (2 分) (2019 高三上·成都月考) 对圆
上任意一点
,
的取值与 x,y 无关,则实数 a 的取值范围是( )
A.
B.
C.
D.
7. (2 分) 直线 l 过圆(x﹣2)2+(y+2)2=25 内一点 M(2,2),则 l 被圆截得的弦长恰为整数的直线共有 ()
A . 8条
B . 7条
第 2 页 共 24 页
C . 6条
D . 5条
8. (2 分) (2016·铜仁) 已知
是椭圆的两个焦点,过 且与椭圆长轴垂直的直线交椭圆于 A,B 两点,
若
为正三角形,则这个椭圆的离心率是( )
A. B. C. D. 9. (2 分) (2020·哈尔滨模拟) 过椭圆 于另一个点 B,且点 B 在 轴上的射影恰好为右焦点 F,若
的左顶点 A 的斜率为 的直线交椭圆 C 则椭圆离心率的取值范围是( )
A. B.
C.
D.
10. (2 分) (2019·丽水月考) 函数
在点
处切线方程为( )
A.
B.
C.
D.
11. (2 分) 已知实数 x、y 满足 x2+y2-2x+4y-20=0,则 x2+y2 的最小值是 ( )
第 3 页 共 24 页
A . 30-10 B . 5- C.5 D . 25
12. (2 分) (2019 高二上·长春月考) 已知椭圆
|F1F2|=2c,若椭圆上存在点 M 使得 ()
中,
A . (0, -1)
=1(a>b>0)的左、右焦点分别为 F1 , F2 , 且 ,则该椭圆离心率的取值范围为
B.
C.
D . ( -1,1)
二、 填空题 (共 6 题;共 7 分)
13. (1 分) (2017 高一下·河北期末) 已知直线 2x+y﹣2=0 与直线 4x+my+6=0 平行,则它们之间的距离为 ________.
14. (1 分) (2015 高三上·潍坊期末) 已知双曲线 C1:
(a>0,b>0)的离心率为 2,若抛物
线 C2:x2=2py(p>0)的焦点到双曲线 C1 的渐近线的距离为 2,则 p=________.
15. (2 分) (2016 高三上·宝安模拟) 过点(3,2 垂直,则 k 的值为________.
)的直线与圆 x2+y2﹣2x﹣3=0 相切,且与直线 kx+y+1=0
16. (1 分) (2019 高二上·四川期中) 若过点(1,2)总可以作两条直线与圆
相
第 4 页 共 24 页
切,则实数 k 的取值范围是________.
17. (1 分) (2019·龙岩模拟) 已知抛物线
的焦点为 ,其准线与 轴的交点为 ,过点 作
直线与抛物线交于
两点.若以
为直径的圆过点 ,则
的值为________.
18. (1 分) (2018 高二上·沈阳期末) 如图,椭圆的中心在坐标原点 ,顶点分别是
,焦
点分别为
,延长
与
交于 点,若
为钝角,则此椭圆的离心率的取值范围是
________.
三、 解答题 (共 9 题;共 90 分)
19.(5 分)(2019 高二上·小店月考) 在平面直角坐标系
中,点
,
,直线
,
圆
(1) 若点 在圆 外,求实数 的取值范围;
(2) 有一动圆 的半径为 ,圆心在 上,若动圆 横坐标 的取值范围.
上存在点
,使
,求圆心 的
20. (10 分) (2020 高一下·内蒙古期末) 已知圆 C: C 相切.求:
(1) 实数 b 的值;
,若直线
与圆
(2) 过
的直线 l 与圆 C 交于 P、Q 两点,如果
.求直线 l 的方程.
21. (10 分) 已知椭圆 C: + =1(m>0).
(Ⅰ)若 m=2,求椭圆 C 的离心率及短轴长;
(Ⅱ)若存在过点 P(﹣1,0),且与椭圆 C 交于 A、B 两点的直线 l,使得以线段 AB 为直径的圆恰好通过坐标 原点,求 m 的取值范围.
第 5 页 共 24 页
22. (15 分) (2020 高二上·慈溪期末) 在
中,
的角平分线在直线
上,
,
为垂足,且 所在直线的方程为
.
(1) 求点 的坐标;
(2) 若点 的坐标为
,求 边上高的长度 .
23. (10 分) (2018 高二上·黑龙江期中) 已知抛物线
上一点,且
.
的焦点为 ,点
为抛物线
(1) 求抛物线的方程.
(2) 直线
与抛物线交于两个不同的点
,若
,求实数 的值.
24. (10 分) (2019 高二上·大兴期中) 已知椭圆 的两个焦点分别是
经过点
.
,
,且椭圆
(1) 求椭圆 的标准方程;
(2) 当 取何值时,直线
与椭圆 有两个公共点;只有一个公共点;没有公共点?
25. (10 分) (2019 高二上·石门月考) 已知椭圆 :
且经过点
.
的长轴长是短轴长的 倍,
(1) 求 的标准方程;
(2) 的右顶点为 ,过 右焦点的直线 与 交于不同的两点 值.
, ,求
面积的最大
26. (10 分) (2015 高二上·集宁期末) 已知顶点在原点,焦点在 y 轴上的抛物线被直线 y=2x+1 截得的弦长
为
.求抛物线的方程.
27. (10 分) (2020·西安模拟) 已知椭圆 :
连结 TF 并延长与椭圆 交于点 S , 且
.
的上顶点为
,右焦点为 F ,
第 6 页 共 24 页
(1) 求椭圆 的方程;
(2) 已知直线
与 x 轴交于点 M , 过点 M 的直线 AB 与 交于 A、B 两点,点 P 为直线
上任意
一点,设直线 AB 与直线
交于点 N , 记 PA , PB , PN 的斜率分别为 , , ,则是否存在实数
,使得
恒成立?若是,请求出 的值;若不是,请说明理由.
第 7 页 共 24 页
一、 单选题 (共 12 题;共 24 分)
答案:1-1、 考点: 解析:
参考答案
答案:2-1、 考点:
解析: 答案:3-1、 考点:
第 8 页 共 24 页
解析: 答案:4-1、 考点:
解析: 答案:5-1、 考点: 解析: 答案:6-1、 考点: 解析:
第 9 页 共 24 页
答案:7-1、 考点:
解析: 答案:8-1、 考点: 解析:
第 10 页 共 24 页
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共6题;共7分)
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
三、解答题 (共9题;共90分)答案:19-1、
答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:
答案:23-1、
答案:23-2、考点:
解析:
答案:24-1、。